cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 245 results. Next

A059919 Generalized Fermat numbers: 3^(2^n)+1, n >= 0.

Original entry on oeis.org

4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Generalized Fermat numbers (Ribenboim (1996))
F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011

Examples

			a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2;
a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2;
a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2;
a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2;
a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2;
a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2;
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A059917 ((3^(2^n)+1)/2).

Programs

Formula

a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n))
a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007
a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0).
The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011
Sum_{n>=0} 2^n/a(n) = 1/2. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011

A002586 Smallest prime factor of 2^n + 1.

Original entry on oeis.org

3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 65537, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 641, 3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 274177, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 65537, 3, 5, 3, 17, 3, 5
Offset: 1

Views

Author

Keywords

Comments

Conjecture: a(8+48*k) = 257 and a(40+48*k) = 257, where k is a nonnegative integer. - Thomas König, Feb 15 2017
Conjecture is true: 257 divides 2^(8+48*k)+1 and 2^(40+48*k)+1 but no prime < 257 ever does. Similarly, a(24+48*k) = 97. - Robert Israel, Feb 17 2017
From Robert Israel, Feb 17 2017: (Start)
If a(n) = p, there is some m such that a(n+m*j*n) = p for all j.
In particular, every member of the sequence occurs infinitely often.
a(k*n) <= a(n) for any odd k. (End)

Examples

			a(2^k) = 3, 5, 17, 257, 65537 is the k-th Fermat prime 2^(2^k) + 1 = A019434(k) for k = 0, 1, 2, 3, 4. - _Jonathan Sondow_, Nov 28 2012
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres, Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := FactorInteger[2^n + 1][[1, 1]]; Array[f, 100] (* Robert G. Wilson v, Nov 28 2012 *)
    FactorInteger[#][[1,1]]&/@(2^Range[90]+1) (* Harvey P. Dale, Jul 25 2024 *)
  • PARI
    a(n) = my(m=n%8); if(m, [3, 5, 3, 17, 3, 5, 3][m], factor(2^n+1)[1,1]); \\ Ruud H.G. van Tol, Feb 16 2024
    
  • Python
    from sympy import primefactors
    smallest_primef = []
    for n in range(1,87):
        y = (2 ** n) + 1
        smallest_primef.append(min(primefactors(y)))
    print(smallest_primef) # Adrienne Leonardo, Dec 29 2024

Formula

a(n) = 3, 5, 3, 17, 3, 5, 3 for n == 1, 2, 3, 4, 5, 6, 7 (mod 8). (Proof. Let n = k*odd with k = 1, 2, or 4. As 2^k = 2, 4, 16 == -1 (mod 3, 5, 17), we get 2^n + 1 = 2^(k*odd) + 1 = (2^k)^odd + 1 == (-1)^odd + 1 == 0 (mod 3, 5, 17). Finally, 2^n + 1 !== 0 (mod p) for prime p < 3, 5, 17, respectively.) - Jonathan Sondow, Nov 28 2012

Extensions

More terms from James Sellers, Jul 06 2000
Definition corrected by Jonathan Sondow, Nov 27 2012

A004729 Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 0

Views

Author

Keywords

Comments

The 32 divisors of the product of the 5 known Fermat primes.
The only known odd numbers whose totient is a power of 2. - Labos Elemer, Dec 06 2000
Equals first 32 members of A001317. Also, equals first 32 members of A053576. - Omar E. Pol, Dec 10 2008
Omitting the first term a(0)=1 gives A045544 (the number of sides of constructible odd-sided regular polygons.)

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 140.

Crossrefs

Programs

  • Mathematica
    Divisors[2^32-1]
  • PARI
    divisors(1<<32-1)

Extensions

Edited by Daniel Forgues, Jun 17 2011

A080176 Generalized Fermat numbers: 10^(2^n) + 1, n >= 0.

Original entry on oeis.org

11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
Offset: 0

Views

Author

Jens Voß, Feb 04 2003

Keywords

Comments

As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 12 base-10 Fermat numbers, only the first two are primes.
Also, binary representation of Fermat numbers (in decimal, see A000215).

Examples

			a(0) = 10^1 + 1 = 11 = 9*(1) + 2 = 9*(empty product) + 2.
a(1) = 10^2 + 1 = 101 = 9*(11) + 2.
a(2) = 10^4 + 1 = 10001 = 9*(11*101) + 2.
a(3) = 10^8 + 1 = 100000001 = 9*(11*101*10001) + 2.
a(4) = 10^16 + 1 = 10000000000000001 = 9*(11*101*10001*100000001) + 2.
a(5) = 10^32 + 1 = 100000000000000000000000000000001 = 9*(11*101*10001*100000001*10000000000000001) + 2.
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).

Programs

Formula

a(0) = 11; a(n) = (a(n - 1) - 1)^2 + 1.
a(n) = 9*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 9*(empty product, i.e., 1)+ 2 = 11 = a(0). - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/9. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011

A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2013

Keywords

Comments

No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
  • PARI
    isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A081092 Primes having a prime number of 1's in their binary representation.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2003

Keywords

Comments

Same as primes with prime binary digit sum.
Primes with prime decimal digit sum are A046704.
Sum_{a(n) < x} 1/a(n) is asymptotic to log(log(log(x))) as x -> infinity; see Harman (2012). Thus the sequence is infinite. - Jonathan Sondow, Jun 09 2012
A049084(A000120(a(n))) > 0; A081091, A000215 and A081093 are subsequences.

Examples

			15th prime = 47 = '101111' with five 1's, therefore 47 is in the sequence.
		

Crossrefs

Subsequence of A052294.

Programs

  • Haskell
    a081092 n = a081092_list !! (n-1)
    a081092_list = filter ((== 1) . a010051') a052294_list
    -- Reinhard Zumkeller, Nov 16 2012
    
  • Maple
    q:= n-> isprime(n) and isprime(add(i,i=Bits[Split](n))):
    select(q, [$1..500])[];  # Alois P. Heinz, Sep 28 2023
  • Mathematica
    Clear[BinSumOddQ];BinSumPrimeQ[a_]:=Module[{i,s=0},s=0;For[i=1,i<=Length[IntegerDigits[a,2]],s+=Extract[IntegerDigits[a,2],i];i++ ];PrimeQ[s]]; lst={};Do[p=Prime[n];If[BinSumPrimeQ[p],AppendTo[lst,p]],{n,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *)
    Select[Prime[Range[100]], PrimeQ[Apply[Plus, IntegerDigits[#, 2]]] &] (* Jonathan Sondow, Jun 09 2012 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(hammingweight(p)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2015
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(n.bit_count()) and isprime(n)
    print([k for k in range(444) if ok(k)]) # Michael S. Branicky, Dec 27 2023

A093179 Smallest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 641, 274177, 59649589127497217, 1238926361552897, 2424833, 45592577, 319489, 114689, 2710954639361, 116928085873074369829035993834596371340386703423373313, 1214251009, 825753601, 31065037602817, 13631489, 70525124609
Offset: 0

Views

Author

Eric W. Weisstein, Mar 27 2004

Keywords

Comments

a(14) might need to be corrected if F(14) turns out to have a smaller factor than 116928085873074369829035993834596371340386703423373313. F(20) is composite, but no explicit factor is known. - Jeppe Stig Nielsen, Feb 11 2010

Examples

			F(0) = 2^(2^0) + 1 = 3, prime.
F(5) = 2^(2^5) + 1 = 4294967297 = 641*6700417.
So 3 as the 0th entry and 641 is the 5th term.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 73.

Crossrefs

Leading entries in triangle A050922.

Programs

  • Mathematica
    Table[With[{k = 2^n}, FactorInteger[2^k + 1]][[1, 1]], {n, 0, 15, 1}] (* Vincenzo Librandi, Jul 23 2013 *)
  • PARI
    g(n)=for(x=9,n,y=Vec(ifactor(2^(2^x)+1));print1(y[1]",")) \\ Cino Hilliard, Jul 04 2007

Formula

a(n) = A007117(n)*2^(n+2) + 1 for n >= 2. - Jianing Song, Mar 02 2021
a(n) = A020639(A000215(n)). - Alois P. Heinz, Oct 25 2024

Extensions

Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
a(14)-a(15) added by Jeppe Stig Nielsen, Feb 11 2010
a(16)-a(19) added based on terms of A007117 by Jianing Song, Mar 02 2021

A245970 Tower of 2's modulo n.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 2, 0, 7, 6, 9, 4, 3, 2, 1, 0, 1, 16, 5, 16, 16, 20, 6, 16, 11, 16, 7, 16, 25, 16, 2, 0, 31, 18, 16, 16, 9, 24, 16, 16, 18, 16, 4, 20, 16, 6, 17, 16, 23, 36, 1, 16, 28, 34, 31, 16, 43, 54, 48, 16, 22, 2, 16, 0, 16, 64, 17, 52, 52, 16, 3, 16
Offset: 1

Views

Author

Wayne VanWeerthuizen, Aug 08 2014

Keywords

Comments

a(n) = (2^(2^(2^(2^(2^ ... ))))) mod n, provided enough 2's are in the tower so that adding more doesn't affect the value of a(n).
Let b(i) = A014221(i) = (2^(2^(2^(2^(2^ ... ))))), with i 2's. Since gcd(b(i)+1, b(j)+1) = gcd(2^2^b(i-2)+1, 2^2^b(j-2)+1) = gcd(A000215(b(i-2)), A000215(b(j-2))) = 1 for 1 <= i < j, there is no n > 1 such that a(n) = n-1. Since b(i)-1 = 2^2^b(i-2)-1 divides b(j)-1 = 2^2^b(j-2)-1 for 1 <= i < j, a(n) = 1 if and only if n > 1 is a divisor of a number of the form b(i)-1, or if and only if n > 1 is a divisor of a Fermat number (A023394). - Jianing Song, May 16 2024

Examples

			a(5) = 1, as 2^x mod 5 is 1 for x being any even multiple of two and X = 2^(2^(2^...)) is an even multiple of two.
		

References

  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a245970 n = powerMod 2 (phi + a245970 phi) n
                where phi = a000010 n
    -- Reinhard Zumkeller, Feb 01 2015
    
  • Maple
    A:= proc(n)
         local phin,F,L,U;
         phin:= numtheory:-phi(n);
         if phin = 2^ilog2(phin) then
            F:= ifactors(n)[2];
            L:= map(t -> t[1]^t[2],F);
            U:= [seq(`if`(F[i][1]=2,0,1),i=1..nops(F))];
            chrem(U,L);
         else
            2 &^ A(phin) mod n
         fi
    end proc:
    seq(A(n), n=2 .. 100); # Robert Israel, Aug 19 2014
  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[2, 2^n, n] (* 2^^(2^n) (mod n), in Knuth's up-arrow notation *); Array[f, 72]
    (* Second program: *)
    a[n_] := Module[{phin, F, L, U},
       phin = EulerPhi[n];
       If[phin == 2^Floor@Log2[phin],
          F = FactorInteger[n];
          L = Power @@@ F;
          U = Table[If[F[[i, 1]] == 2, 0, 1], {i, 1, Length[F]}];
          ChineseRemainder[U, L],
          (2^a[phin])~Mod~n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 03 2023, after Robert Israel *)
  • PARI
    a(n)=if(n<3, return(0)); my(e=valuation(n,2),k=n>>e); lift(chinese(Mod(2,k)^a(eulerphi(k)), Mod(0,2^e))) \\ Charles R Greathouse IV, Jul 29 2016
  • SageMath
    def tower2mod(n):
        if ( n <= 22 ):
            return 65536%n
        else:
            ep = euler_phi(n)
            return power_mod(2,ep+tower2mod(ep),n)
    

Formula

a(n) = 2^(A000010(n)+a(A000010(n))) mod n.
a(n) = 0 if n is a power of 2.
a(n) = (2^2) mod n, if n < 5.
a(n) = (2^(2^2)) mod n, if n < 11.
a(n) = (2^(2^(2^2))) mod n, if n < 23.
a(n) = (2^(2^(2^(2^2)))) mod n, if n < 47.
a(n) = (2^^k) mod n, if n < A027763(k), where ^^ is Knuth's double-arrow notation.
From Robert Israel, Aug 19 2014: (Start)
If gcd(m,n) = 1, then a(m*n) is the unique k in [0,...,m*n-1] with
k == a(n) mod n and k == a(m) mod m.
a(n) = 1 if n is a Fermat number.
a(n) = 2^a(A000010(n)) mod n if n is not in A003401.
(End)

A078303 Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.

Original entry on oeis.org

7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
Offset: 0

Views

Author

Eric W. Weisstein, Nov 21 2002

Keywords

Comments

The next term is too large to include.
As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 13 base-6 Fermat numbers, only the first three are primes.
Either the sequence of (standard) Fermat numbers contains infinitely many composite numbers or the sequence of base-6 Fermat numbers contains infinitely many composite numbers (cf. https://mathoverflow.net/a/404235/1593). - José Hernández, Nov 09 2021
Since all powers of 6 are congruent to 6 (mod 10), all terms of this sequence are congruent to 7 (mod 10). - Daniel Forgues, Jun 22 2011
There are only 5 known Fermat primes of the form 2^(2^n) + 1: {3, 5, 17, 257, 65537}. There are only 2 known base-10 generalized Fermat primes of the form 10^(2^n) + 1: {11, 101}. - Alexander Adamchuk, Mar 17 2007

Examples

			a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2;
a(1) = 6^2+1 = 37 = 5*(7)+2;
a(2) = 6^4+1 = 1297 = 5*(7*37)+2;
a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2;
a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2;
a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A019434 (Fermat primes of the form 2^(2^n) + 1).

Programs

Formula

a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/5. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 22 2011

A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0.

Original entry on oeis.org

8, 50, 2402, 5764802, 33232930569602, 1104427674243920646305299202, 1219760487635835700138573862562971820755615294131238402
Offset: 0

Views

Author

Eric W. Weisstein, Nov 21 2002

Keywords

Comments

From Daniel Forgues, Jun 19 2011: (Start)
Generalized Fermat numbers F_n(a) := F_n(a,1) = a^(2^n)+1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for the current sequence) (Ribenboim (1996)).
All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994, 1998)). (This only expresses that the factors are odd, which means that it only applies to odd generalized Fermat numbers.) (End)

Examples

			a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2.
a(1) = 7^2+1 = 50 = 6*(8)+2.
a(2) = 7^4+1 = 2402 = 6*(8*50)+2.
a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2.
a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2.
a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n)+1, n >= 0).

Programs

Formula

a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.
a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/6. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011
Previous Showing 41-50 of 245 results. Next