1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 3, 3, 1, 2, 1, 2, 4, 1, 1, 1, 1, 3, 2, 2, 3, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 4, 1, 4, 2, 1, 1, 1, 3, 1, 2, 1, 5, 2, 2, 1, 2, 3, 1, 3, 3, 2, 6, 1, 2, 2, 1, 3, 1, 3, 2, 5, 1, 1, 1, 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 1, 2, 1, 2, 1, 1, 2, 5, 1, 2, 2
Offset: 1
For a sum of 5, we have 1,2,2, which groups as 1, 2, 2+1, 2+2, 1+2+2, 1+2+2+1, .... This could be refined by splitting the second 2, to give the sequence 1,2,1,1; note that when this is grouped, the two 1's from the refinement always wind up in the same sum.
The array starts:
1;
1,2;
1,2,2;
1,2,3,1;
1,2,3,3;
1,2,1,2,4,1;
...
A084848
a(n) is the number of quadratic residues of A085635(n).
Original entry on oeis.org
1, 2, 2, 3, 4, 4, 7, 8, 12, 14, 16, 16, 24, 28, 32, 42, 48, 48, 48, 64, 84, 96, 112, 144, 144, 176, 192, 192, 288, 336, 336, 504, 576, 576, 704, 864, 1008, 1056, 1152, 1232, 1152, 1344, 1728, 1920, 2016, 2016, 2352
Offset: 1
Jose R. Brox (tautocrona(AT)terra.es), Jul 12 2003
a(2)=2 because there are 2 different quadratic residues modulo 3, so 3 has 66.67% of quadratic residues density, while 2 has a 100%, so 3 has the least quadratic residues density up to 3.
-
Block[{s = Range[0, 2^15 + 1]^2, t}, t = Array[{#1/#2, #2} & @@ {#, Length@ Union@ Mod[Take[s, # + 1], #]} &, Length@ s - 1]; Map[t[[All, -1]][[FirstPosition[t[[All, 1]], #][[1]] ]] &, Union@ FoldList[Max, t[[All, 1]] ] ] ] (* Michael De Vlieger, Sep 10 2018 *)
-
a000224(n)=my(f=factor(n));prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ from Charles R Greathouse IV
r=2;for(k=1,1e6,v=a000224(k);t=v/k;if(tHugo Pfoertner, Aug 24 2018
A117484
Number of triangular numbers mod n.
Original entry on oeis.org
1, 2, 2, 4, 3, 4, 4, 8, 4, 6, 6, 8, 7, 8, 6, 16, 9, 8, 10, 12, 8, 12, 12, 16, 11, 14, 11, 16, 15, 12, 16, 32, 12, 18, 12, 16, 19, 20, 14, 24, 21, 16, 22, 24, 12, 24, 24, 32, 22, 22, 18, 28, 27, 22, 18, 32, 20, 30, 30, 24, 31, 32, 16, 64, 21, 24, 34, 36, 24, 24, 36, 32, 37, 38, 22
Offset: 1
When n=3, there is no triangular number which is congruent to 2 (mod 3) but only == 0 or 1 (mod 3), so a(3) = 2. - _Robert G. Wilson v_, Sep 16 2015
- Robert Israel, Table of n, a(n) for n = 1..10000
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 21.
- David Morales Marciel, Bouncing patterns of some modulo-n series (n-gons 3 to 14, 16, 17 and 27), according to the algorithm explained in the comments. Current sequence belongs to the bouncing pattern of the 3-gon sample (first at the top).
-
a:= proc(n) local F, f;
F:= ifactors(n)[2];
mul(seq(`if`(f[1]=2, 2^f[2], floor(f[1]^(f[2]+1)/(2*f[1]+2))+1), f=F))
end proc:
map(a, [$1..100]); # Robert Israel, Jul 13 2015
-
f[n_] := Block[{fi = FactorInteger@ n, k = t = 1}, lng = 1 + Length@ fi; While[k < lng, t = t*If[ fi[[k, 1]] == 2, 2^fi[[k, 2]], Floor[1 + fi[[k, 1]]^(fi[[k, 2]] + 1)/(2 + 2fi[[k, 1]]) ]]; k++]; t]; Array[f, 75] (* Robert G. Wilson v, Sep 16 2015, after Robert Israel *)
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^f[i,2], (f[i,1]^(f[i,2]+1)\(2*f[i,1] + 2)) + 1));} \\ Amiram Eldar, Sep 05 2023
A122906
Numbers m such that in Z/mZ the number of squares is less than or equal to the number of invertible elements.
Original entry on oeis.org
1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93
Offset: 1
Complement of
A122905 in positive integers.
-
Select[Range@94, Length@Union@Mod[Range[#]^2, #] <= EulerPhi[#] &] (* Ivan Neretin, Dec 14 2016 *)
f1[p_, e_] := Floor[p^(e+1)/(2p + 2)] + 1; f1[2, e_] := Floor[2^e/6] + 2; f[p_, e_] := f1[p, e]/((p-1) * p^(e-1)); q[1] = True; q[k_] := Times @@ f @@@ FactorInteger[k] <= 1; Select[Range[100], q] (* Amiram Eldar, Nov 11 2024 *)
A186646
Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
Offset: 1
-
A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
-
Flatten[Table[{n,n+1,n+2,(n+3)/2},{n,1,101,4}]] (* or *) LinearRecurrence[ {0,0,0,2,0,0,0,-1},{1,2,3,2,5,6,7,4},100] (* Harvey P. Dale, May 30 2014 *)
Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
-
a(n)=if(n%4,n,n/2) \\ Charles R Greathouse IV, Oct 16 2015
-
def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023
A290732
Number of distinct values of X*(3*X-1)/2 mod n.
Original entry on oeis.org
1, 2, 3, 4, 3, 6, 4, 8, 9, 6, 6, 12, 7, 8, 9, 16, 9, 18, 10, 12, 12, 12, 12, 24, 11, 14, 27, 16, 15, 18, 16, 32, 18, 18, 12, 36, 19, 20, 21, 24, 21, 24, 22, 24, 27, 24, 24, 48, 22, 22, 27, 28, 27, 54, 18, 32, 30, 30, 30, 36
Offset: 1
The values taken by (3*X^2-X)/2 mod n for small n are:
1, [0]
2, [0, 1]
3, [0, 1, 2]
4, [0, 1, 2, 3]
5, [0, 1, 2]
6, [0, 1, 2, 3, 4, 5]
7, [0, 1, 2, 5]
8, [0, 1, 2, 3, 4, 5, 6, 7]
9, [0, 1, 2, 3, 4, 5, 6, 7, 8]
10, [0, 1, 2, 5, 6, 7]
11, [0, 1, 2, 4, 5, 7]
12, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
...
-
a:=[]; M:=80;
for n from 1 to M do
q1:={};
for i from 0 to 2*n-1 do q1:={op(q1), i*(3*i-1)/2 mod n}; od;
s1:=sort(convert(q1,list));
a:=[op(a),nops(s1)];
od:
a;
-
a[n_] := Table[PolynomialMod[X(3X-1)/2, n], {X, 0, 2*n-1}]// Union // Length;
Array[a, 60] (* Jean-François Alcover, Sep 01 2018 *)
-
a(n)={my(v=vector(n)); for(i=0, 2*n-1, v[i*(3*i-1)/2%n + 1]=1); vecsum(v)} \\ Andrew Howroyd, Oct 27 2018
-
a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p<=3, p^e, 1 + p^(e+1)\(2*p+2)))} \\ Andrew Howroyd, Nov 03 2018
A122904
Numbers m such that in Z/mZ the number of squares is strictly less than the number of invertible elements.
Original entry on oeis.org
5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100
Offset: 1
-
Select[Range@100, Length@Union@Mod[Range[#]^2, #] < EulerPhi[#] &] (* Ivan Neretin, Dec 14 2016 *)
f1[p_, e_] := Floor[p^(e+1)/(2p + 2)] + 1; f1[2, e_] := Floor[2^e/6] + 2; f[p_, e_] := f1[p, e]/((p-1) * p^(e-1)); q[1] = False; q[k_] := Times @@ f @@@ FactorInteger[k] < 1; Select[Range[100], q] (* Amiram Eldar, Nov 11 2024 *)
Comments