cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A095972 Number of quadratic nonresidues modulo n.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 5, 5, 4, 5, 8, 6, 6, 9, 12, 8, 10, 9, 14, 13, 10, 11, 18, 14, 12, 16, 20, 14, 18, 15, 25, 21, 16, 23, 28, 18, 18, 25, 31, 20, 26, 21, 32, 33, 22, 23, 40, 27, 28, 33, 38, 26, 32, 37, 44, 37, 28, 29, 48, 30, 30, 47, 52, 44, 42, 33, 50, 45, 46, 35, 60, 36, 36, 53
Offset: 1

Views

Author

Cino Hilliard, Jul 21 2004

Keywords

Comments

A218578(n) is the number of times n occurs in this sequence. - Dmitri Kamenetsky, Nov 03 2012

Crossrefs

Programs

  • Maple
    A095972 := proc(n)
        local a,q;
        a := 0 ;
        for q from 0 to n-1 do
            if numtheory[quadres](q,n) = -1 then
                a := a+1 ;
            end if;
        end do;
        a ;
    end proc: # R. J. Mathar, Nov 05 2012
  • Mathematica
    Table[Length[Complement[Range[n-1], Union[Mod[Range[n]^2, n]]]], {n, 100}] (* T. D. Noe, Nov 06 2012 *)
  • PARI
    A095972(n)={local(v);v=vector(n,i,1);for(i=0,floor(n/2),v[i^2%n+1]=0);sum(i=1,n,v[i])} \\ Michael B. Porter, Apr 30 2010
    
  • PARI
    a(n)=my(f=factor(n));n-prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from math import prod
    from sympy import factorint
    def A095972(n): return n-prod((p**(e+1)//((p+1)*(q:=1+(p==2)))>>1)+q for p, e in factorint(n).items()) # Chai Wah Wu, Oct 07 2024

Formula

a(n) = n - A000224(n). - R. J. Mathar, Nov 05 2012

Extensions

Edited by Don Reble, May 07 2006

A039300 Number of distinct quadratic residues mod 3^n.

Original entry on oeis.org

1, 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144, 66431, 199291, 597872, 1793614, 5380841, 16142521, 48427562, 145282684, 435848051, 1307544151, 3922632452, 11767897354, 35303692061, 105911076181, 317733228542, 953199685624
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit suffixes of base 3 squares.
In general, for any odd prime p, the number s of quadratic residues mod p^n is given by s = (p^(n+1) + p + 2)/(2p + 2) for even n and s = (p^(n+1) + 2*p + 1)/(2p + 2) for odd n, see A000224. - Lekraj Beedassy, Jan 07 2005

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 324.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (3^(n+1) +6 -(-1)^n)/8); # G. C. Greubel, Jul 14 2019
  • Magma
    [(3^(n+1) + 6 + (-1)^(n+1))/8: n in [0..30]]; // Vincenzo Librandi, Apr 21 2012
    
  • Maple
    A039300 := proc(n)
        floor((3^n+3)*3/8) ;
    end proc:
    seq(A039300(n),n=0..30) ; # R. J. Mathar, Sep 28 2017
  • Mathematica
    CoefficientList[Series[(1-x-3x^2)/((1-x)(1+x)(1-3x)),{x,0,30}],x] (* Vincenzo Librandi, Apr 21 2012 *)
    Table[Floor((3^n+3)*3/8),{n,0,30}] (* Bruno Berselli, Apr 21 2012 *)
    CoefficientList[Series[1/8 E^-x (-1 + 6 E^(2 x) + 3 E^(4 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    {a(n) = if(n<0, 0, 3^n*3\8 + 1)}; /* Michael Somos,Mar 27 2005 */
    
  • PARI
    {a(n) = if(n<1, n==0, 3*a(n-1) - 2 + n%2)}; /* Michael Somos, Mar 27 2005 */
    
  • Sage
    [(3^(n+1) +6 -(-1)^n)/8 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3*(3^n + 3)/8).
a(n) = A033113(n) + 1.
a(n) = (3^(n+1) + 6 + (-1)^(n+1))/8. - Lekraj Beedassy, Jan 07 2005
G.f.: (1 - x - 3*x^2)/((1 - x)*(1 + x)*(1 - 3*x)). - Michael Somos, Mar 27 2005
a(n) = 2*a(n-1) + 3*a(n-2) - 3 with n > 1, a(0) = 1, a(1) = 1. - Zerinvary Lajos, Dec 14 2008
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3). Vincenzo Librandi, Apr 21 2012
a(n) = A000224(3^n). - R. J. Mathar, Sep 28 2017
E.g.f.: (1/8)*exp(-x)*(-1+6*exp(2*x)+3*exp(4*x)). - Stefano Spezia, Sep 04 2018

A085635 Compute S, the number of different quadratic residues modulo B for every base B. If the density S/B is smaller for B than for every B' less than B, then B is added to the sequence.

Original entry on oeis.org

1, 3, 4, 8, 12, 16, 32, 48, 80, 96, 112, 144, 240, 288, 336, 480, 560, 576, 720, 1008, 1440, 1680, 2016, 2640, 2880, 3600, 4032, 5040, 7920, 9360, 10080, 15840, 18480, 20160, 25200, 31680, 37440, 39600, 44352, 50400, 55440, 65520, 85680, 95760
Offset: 1

Views

Author

Jose R. Brox (tautocrona(AT)terra.es), Jul 10 2003

Keywords

Comments

After 2880, 3360 has exactly the same density (5%).

Examples

			a(3)=4 because for B=4 the different quadratic residues are {0,1}, so S=2, the density is D_4=50%, which is smaller than D_2=100% and D_3=66.67%.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Range[0, 2^14 + 1]^2, t}, t = Array[#/Length@ Union@ Mod[Take[s, # + 1], #] &, Length@ s - 1]; Map[FirstPosition[t, #][[1]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Sep 10 2018 *)
  • PARI
    r=-1;for(n=1,1e6,t=1-sum(k=1,n,issquare(Mod(k,n)))/n;if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    sq1(m)=sum(n=0,m-1,issquare(Mod(n,m)))
    sq(n,f=factor(n))=prod(i=1,#f~,my(p=f[i,1],e=f[i,2]); if(e>1,sq1(p^e),p\2+1))
    r=2;for(n=1,1e6, t=sq(n)/n; if(tCharles R Greathouse IV, Mar 30 2018

Extensions

More terms from Jud McCranie, Jul 12 2003
a(1) and PARI programs corrected by Hugo Pfoertner, Aug 23 2018

A118382 Primitive Orloj clock sequences; row n sums to 2n-1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 3, 3, 1, 2, 1, 2, 4, 1, 1, 1, 1, 3, 2, 2, 3, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 4, 1, 4, 2, 1, 1, 1, 3, 1, 2, 1, 5, 2, 2, 1, 2, 3, 1, 3, 3, 2, 6, 1, 2, 2, 1, 3, 1, 3, 2, 5, 1, 1, 1, 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 1, 2, 1, 2, 1, 1, 2, 5, 1, 2, 2
Offset: 1

Views

Author

Keywords

Comments

An Orloj clock sequence is a finite sequence of positive integers that, when iterated, can be grouped so that the groups sum to successive natural numbers. There is one primitive sequence whose values sum to each odd m; all other sequences can be obtained by repeating and refining these. Refining means splitting one or more terms into values summing to that term. The Orloj clock sequence is the one summing to 15: 1,2,3,4,3,2, with a beautiful up and down pattern.
These are known in some papers as Sindel sequences. It appears that this sequence was submitted prior to the first such publication.

Examples

			For a sum of 5, we have 1,2,2, which groups as 1, 2, 2+1, 2+2, 1+2+2, 1+2+2+1, .... This could be refined by splitting the second 2, to give the sequence 1,2,1,1; note that when this is grouped, the two 1's from the refinement always wind up in the same sum.
The array starts:
  1;
  1,2;
  1,2,2;
  1,2,3,1;
  1,2,3,3;
  1,2,1,2,4,1;
  ...
		

Crossrefs

Cf. A028355, A118383. Length of row n is A117484(2n-1) = A000224(2n-1).

Programs

  • PARI
    {Orloj(n) = local(found,tri,i,last,r); found = vector(n,i,0); found[n] = 1; tri = 0; for(i = 1, if(n%2==0,n-1,n\2), tri += i; if(tri >= n, tri -= n); found[tri] = 1); last = 0; r = []; for(i = 1, n, if(found[i], r = concat(r, [i-last]); last = i)); r}

Formula

Let b(i),0<=i

A084848 a(n) is the number of quadratic residues of A085635(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 7, 8, 12, 14, 16, 16, 24, 28, 32, 42, 48, 48, 48, 64, 84, 96, 112, 144, 144, 176, 192, 192, 288, 336, 336, 504, 576, 576, 704, 864, 1008, 1056, 1152, 1232, 1152, 1344, 1728, 1920, 2016, 2016, 2352
Offset: 1

Author

Jose R. Brox (tautocrona(AT)terra.es), Jul 12 2003

Keywords

Comments

Note that the terms are not all distinct.

Examples

			a(2)=2 because there are 2 different quadratic residues modulo 3, so 3 has 66.67% of quadratic residues density, while 2 has a 100%, so 3 has the least quadratic residues density up to 3.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Range[0, 2^15 + 1]^2, t}, t = Array[{#1/#2, #2} & @@ {#, Length@ Union@ Mod[Take[s, # + 1], #]} &, Length@ s - 1]; Map[t[[All, -1]][[FirstPosition[t[[All, 1]], #][[1]] ]] &, Union@ FoldList[Max, t[[All, 1]] ] ] ] (* Michael De Vlieger, Sep 10 2018 *)
  • PARI
    a000224(n)=my(f=factor(n));prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ from Charles R Greathouse IV
    r=2;for(k=1,1e6,v=a000224(k);t=v/k;if(tHugo Pfoertner, Aug 24 2018

Formula

a(n) = A000224(A085635(n)). - Hugo Pfoertner, Aug 24 2018

Extensions

More terms from Jud McCranie, Jul 18 2003
a(1) corrected by Hugo Pfoertner, Aug 23 2018

A117484 Number of triangular numbers mod n.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 4, 8, 4, 6, 6, 8, 7, 8, 6, 16, 9, 8, 10, 12, 8, 12, 12, 16, 11, 14, 11, 16, 15, 12, 16, 32, 12, 18, 12, 16, 19, 20, 14, 24, 21, 16, 22, 24, 12, 24, 24, 32, 22, 22, 18, 28, 27, 22, 18, 32, 20, 30, 30, 24, 31, 32, 16, 64, 21, 24, 34, 36, 24, 24, 36, 32, 37, 38, 22
Offset: 1

Author

Keywords

Comments

Same as A000224 (number of squares mod n) for n odd, since there we can divide by 2 and then complete the square.
From David Morales Marciel, Jul 13 2015: (Start)
a(n) is also the total number of vertices of an n-gon that are a "final vertex" of a bouncing pattern representing the modulo-n series (an image of the bouncing pattern is included in the LINKS section). It is defined by the following algorithm:
(1) Define counter c=1.
(2) Start at any desired vertex.
(3) Mark the current vertex as a "final vertex".
(4) Advance clockwise c vertices.
(5) Set c=c+1.
(6) Repeat from (3).
The pattern of "final vertices" is cyclic: after some repetitions of steps (3)-(6), the marking of vertices is repeated and it is possible to count how many vertices of the n-gon contain a "final vertex" mark.
Examples: trivial case: a(n)=1 (one vertex is always a "final vertex"). From that point following the algorithm: a(2)=2 (segment, both vertices are a "final vertex"), a(3)=2 (triangle, only two vertices are "final vertex"), etc.
(End)

Examples

			When n=3, there is no triangular number which is congruent to 2 (mod 3) but only == 0 or 1 (mod 3), so a(3) = 2. - _Robert G. Wilson v_, Sep 16 2015
		

Crossrefs

Cf. A000224.

Programs

  • Maple
    a:= proc(n) local F, f;
    F:= ifactors(n)[2];
    mul(seq(`if`(f[1]=2, 2^f[2], floor(f[1]^(f[2]+1)/(2*f[1]+2))+1), f=F))
    end proc:
    map(a, [$1..100]); # Robert Israel, Jul 13 2015
  • Mathematica
    f[n_] := Block[{fi = FactorInteger@ n, k = t = 1}, lng = 1 + Length@ fi; While[k < lng, t = t*If[ fi[[k, 1]] == 2, 2^fi[[k, 2]], Floor[1 + fi[[k, 1]]^(fi[[k, 2]] + 1)/(2 + 2fi[[k, 1]]) ]]; k++]; t]; Array[f, 75] (* Robert G. Wilson v, Sep 16 2015, after Robert Israel *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^f[i,2], (f[i,1]^(f[i,2]+1)\(2*f[i,1] + 2)) + 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Multiplicative with a(2^e) = 2^e, a(p^e) = floor(p^(e+1)/(2p+2))+1 for p > 2.

A122906 Numbers m such that in Z/mZ the number of squares is less than or equal to the number of invertible elements.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93
Offset: 1

Author

Max Alekseyev, Sep 18 2006

Keywords

Comments

Numbers m such that A000224(m) <= A000010(m).
The terms 70 and 90 show that sequence is strictly different from A042965. - Andrew S. Plewe, Jun 13 2007

Crossrefs

Union of A122903 and A122904.
Complement of A122905 in positive integers.

Programs

  • Mathematica
    Select[Range@94, Length@Union@Mod[Range[#]^2, #] <= EulerPhi[#] &] (* Ivan Neretin, Dec 14 2016 *)
    f1[p_, e_] := Floor[p^(e+1)/(2p + 2)] + 1; f1[2, e_] := Floor[2^e/6] + 2; f[p_, e_] := f1[p, e]/((p-1) * p^(e-1)); q[1] = True; q[k_] := Times @@ f @@@ FactorInteger[k] <= 1; Select[Range[100], q] (* Amiram Eldar, Nov 11 2024 *)

A186646 Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
Offset: 1

Author

R. J. Mathar, Feb 25 2011

Keywords

Comments

a(n) is the length of the period of the sequence k^2 mod n, k=1,2,3,4,..., i.e., the length of the period of A000035 (n=2), A011655 (n=3), A000035 (n=4), A070430 (n=5), A070431 (n=6), A053879 (n=7), A070432 (n=8), A070433 (n=9), A008959 (n=10), A070434 (n=11), A070435 (n=12) etc.
From Franklin T. Adams-Watters, Feb 24 2011: (Start)
Clearly if gcd(n,m) = 1, a(nm) = lcm(a(n),a(m)), so it suffices to establish this for prime powers.
If p is a prime, the period must divide p, but k^2 mod p is not constant, so a(p) = p.
a(p^e), e > 1, must be divisible by a(p^(e-1)), and must divide p^e. If p != 2, (p^(e-1)+1)^2 = p^(2e-2)+2p^(e-1)+1 == 2p^(e-1)+1 (mod p^2), so a(p^e) != p^(e-1); it must then be e.
By inspection, a(4) = 2 and a(8) = 4.
This leaves a(2^e), e > 3. But then (2^(e-2)+1)^2 = 2^(2e-4)+2^(e-1)+1 == 2^(e-1)+1 (mod 2^e), so a(n) > 2^(e-2). On the other hand, (2^(e-1)+c)^2 = 2^(2e-2)+c2^e+c^2 == c^2 (mod 2^e). Hence the period is 2^(e-1). (End)

Crossrefs

Cf. A000224 (size of the set of moduli of k^2 mod n), A019554, A060819, A061037, A090129, A142705, A164115, A283971.

Programs

  • Maple
    A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
  • Mathematica
    Flatten[Table[{n,n+1,n+2,(n+3)/2},{n,1,101,4}]] (* or *) LinearRecurrence[ {0,0,0,2,0,0,0,-1},{1,2,3,2,5,6,7,4},100] (* Harvey P. Dale, May 30 2014 *)
    Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
  • PARI
    a(n)=if(n%4,n,n/2) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(n) = 2*a(n-4) - a(n-8).
a(4n) = 2n; a(4n+1) = 4n+1; a(4n+2) = 4n+2; a(4n+3) = 4n+3.
a(n) = n/A164115(n).
G.f.: x*(1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
Dirichlet g.f.: (1-2/4^s)*zeta(s-1).
A019554(n) | a(n). - Charles R Greathouse IV, Feb 24 2011
a(n) = n*(7 - (-1)^n - (-i)^n - i^n)/8, with i=sqrt(-1). - Bruno Berselli, Feb 25 2011
Multiplicative with a(p^e)=2^e if p=2 and e<=1; a(p^e)=2^(e-1) if p=2 and e>=2; a(p^e)=p^e otherwise. - David W. Wilson, Feb 26 2011
a(n) * A060819(n+2) = A142705(n+1) = A061037(2n+2). - Paul Curtz, Mar 02 2011
a(n) = n - (n/2)*floor(((n-1) mod 4)/3). - Gary Detlefs, Apr 14 2013
a(2^n) = A090129(n+1). - R. J. Mathar, Oct 09 2014
a(n) = n*(7 - (-1)^n - 2*cos(n*Pi/2))/8. - Federico Provvedi, Jan 02 2018
E.g.f.: (1/4)*x*(4*cosh(x) + sin(x) + 3*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022

A290732 Number of distinct values of X*(3*X-1)/2 mod n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 4, 8, 9, 6, 6, 12, 7, 8, 9, 16, 9, 18, 10, 12, 12, 12, 12, 24, 11, 14, 27, 16, 15, 18, 16, 32, 18, 18, 12, 36, 19, 20, 21, 24, 21, 24, 22, 24, 27, 24, 24, 48, 22, 22, 27, 28, 27, 54, 18, 32, 30, 30, 30, 36
Offset: 1

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Examples

			The values taken by (3*X^2-X)/2 mod n for small n are:
   1, [0]
   2, [0, 1]
   3, [0, 1, 2]
   4, [0, 1, 2, 3]
   5, [0, 1, 2]
   6, [0, 1, 2, 3, 4, 5]
   7, [0, 1, 2, 5]
   8, [0, 1, 2, 3, 4, 5, 6, 7]
   9, [0, 1, 2, 3, 4, 5, 6, 7, 8]
  10, [0, 1, 2, 5, 6, 7]
  11, [0, 1, 2, 4, 5, 7]
  12, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
  ...
		

Crossrefs

Cf. A000224 (analog for X^2), A014113, A290729, A290730, A290731, A317623.

Programs

  • Maple
    a:=[]; M:=80;
    for n from 1 to M do
    q1:={};
    for i from 0 to 2*n-1 do q1:={op(q1), i*(3*i-1)/2 mod n}; od;
    s1:=sort(convert(q1,list));
    a:=[op(a),nops(s1)];
    od:
    a;
  • Mathematica
    a[n_] := Table[PolynomialMod[X(3X-1)/2, n], {X, 0, 2*n-1}]// Union // Length;
    Array[a, 60] (* Jean-François Alcover, Sep 01 2018 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, 2*n-1, v[i*(3*i-1)/2%n + 1]=1); vecsum(v)} \\ Andrew Howroyd, Oct 27 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p<=3, p^e, 1 + p^(e+1)\(2*p+2)))} \\ Andrew Howroyd, Nov 03 2018

Formula

a(3^n) = 3^n. - Hugo Pfoertner, Aug 25 2018
a(n) = A317623(n) * A040001(n). - Andrew Howroyd, Oct 27 2018
Multiplicative with a(2^e) = 2^e, a(3^e) = 3^e, a(p^e) = 1 + floor( p^(e+1)/(2*p+2) ) for prime p >= 5. - Andrew Howroyd, Nov 03 2018

Extensions

Even terms corrected by Andrew Howroyd, Nov 03 2018

A122904 Numbers m such that in Z/mZ the number of squares is strictly less than the number of invertible elements.

Original entry on oeis.org

5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100
Offset: 1

Author

Max Alekseyev, Sep 18 2006

Keywords

Comments

Numbers m such that A000224(m) < A000010(m).

Programs

  • Mathematica
    Select[Range@100, Length@Union@Mod[Range[#]^2, #] < EulerPhi[#] &] (* Ivan Neretin, Dec 14 2016 *)
    f1[p_, e_] := Floor[p^(e+1)/(2p + 2)] + 1; f1[2, e_] := Floor[2^e/6] + 2; f[p_, e_] := f1[p, e]/((p-1) * p^(e-1)); q[1] = False; q[k_] := Times @@ f @@@ FactorInteger[k] < 1; Select[Range[100], q] (* Amiram Eldar, Nov 11 2024 *)
Previous Showing 21-30 of 53 results. Next