cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 360 results. Next

A008785 a(n) = (n+4)^n.

Original entry on oeis.org

1, 5, 36, 343, 4096, 59049, 1000000, 19487171, 429981696, 10604499373, 289254654976, 8649755859375, 281474976710656, 9904578032905937, 374813367582081024, 15181127029874798299, 655360000000000000000, 30041942495081691894741, 1457498964228107529355264
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

E.g.f.(x) for b(n) = n^(n-4) = a(n-4): T - (7/8)*T^2 + (11/36)*T^3 - (1/24)*T^4, where T = T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
E.g.f.: LambertW(-x)^4/(x^4*(1+LambertW(-x))). - Vladeta Jovovic, Nov 07 2003
E.g.f.: (1/3)*d/dx(LambertW(-x)/(-x))^3. - Wolfdieter Lang, Oct 25 2022

A008788 a(n) = n^(n+2).

Original entry on oeis.org

0, 1, 16, 243, 4096, 78125, 1679616, 40353607, 1073741824, 31381059609, 1000000000000, 34522712143931, 1283918464548864, 51185893014090757, 2177953337809371136, 98526125335693359375, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + 16*x^2 + 243*x^3 + 4096*x^4 + 78125*x^5 + 1679616*x^6 + ...
		

Crossrefs

Programs

Formula

E.g.f.(x): T*(1 + 2*T)*(1-T)^(-5); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s. and A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^2/dx^2 {x^2/(T(x)^2*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012

A222029 Triangle of number of functions in a size n set for which the sequence of composition powers ends in a length k cycle.

Original entry on oeis.org

1, 1, 3, 1, 16, 9, 2, 125, 93, 32, 6, 1296, 1155, 480, 150, 24, 20, 16807, 17025, 7880, 3240, 864, 840, 262144, 292383, 145320, 71610, 24192, 26250, 720, 0, 0, 504, 0, 420, 4782969, 5752131, 3009888, 1692180, 653184, 773920, 46080, 5040, 0, 32256, 0, 26880, 0, 0, 2688
Offset: 0

Views

Author

Chad Brewbaker, May 14 2013

Keywords

Comments

If you take the powers of a finite function you generate a lollipop graph. This table organizes the lollipops by cycle size. The table organized by total lollipop size with the tail included is A225725.
Warning: For T(n,k) after the sixth row there are zero entries and k can be greater than n: T(7,k) = |{1=>262144, 2=>292383, 3=>145320, 4=>71610, 5=>24192, 6=>26250, 7=>720, 8=>0, 9=>0, 10=>504, 11=>0, 12=>420}|.

Examples

			T(1,1) = |{[0]}|, T(2,1) = |{[0,0],[0,1],[1,1]}|, T(2,2) = |{[0,1]}|.
Triangle starts:
       1;
       1;
       3,      1;
      16,      9,      2;
     125,     93,     32,     6;
    1296,   1155,    480,   150,    24,    20;
   16807,  17025,   7880,  3240,   864,   840;
  262144, 292383, 145320, 71610, 24192, 26250, 720, 0, 0, 504, 0, 420;
  ...
		

Crossrefs

Rows sums give A000312.
Row lengths are A000793.
Number of nonzero elements of rows give A009490.
Last elements of rows give A162682.
Main diagonal gives A290961.
Cf. A057731 (the same for permutations), A290932.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, x^m, add((j-1)!*
          b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(add(
             b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 14 2017
  • Mathematica
    b[n_, m_]:=b[n, m]=If[n==0, x^m, Sum[(j - 1)!*b[n - j, LCM[m, j]] Binomial[n - 1, j - 1], {j, n}]]; T[n_]:=If[n==0, {1}, Drop[CoefficientList[Sum[b[j, 1]n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}], x], 1]]; Table[T[n], {n, 0, 10}]//Flatten (* Indranil Ghosh, Aug 17 2017 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, Symbol, lcm, factorial as f, Poly, flatten
    x=Symbol('x')
    @cacheit
    def b(n, m): return x**m if n==0 else sum([f(j - 1)*b(n - j, lcm(m, j))*binomial(n - 1, j - 1) for j in range(1, n + 1)])
    def T(n): return Poly(sum([b(j, 1)*n**(n - j)*binomial(n - 1, j - 1) for j in range(n + 1)]),x).all_coeffs()[::-1][1:]
    print([T(n) for n in range(11)]) # Indranil Ghosh, Aug 17 2017

Formula

Sum_{k=1..A000793(n)} k * T(n,k) = A290932. - Alois P. Heinz, Aug 14 2017

Extensions

T(0,1)=1 prepended by Alois P. Heinz, Aug 14 2017

A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        2       3
       44      24      16
     4983     940     300     125
  7565342  154770   18000    4320    1296
		

Crossrefs

Row sums are A048143. First column is A275307. Last column is A030019.

Programs

  • Mathematica
    blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A369140 Number of labeled loop-graphs covering {1..n} such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 4, 23, 193, 2133, 29410, 486602, 9395315, 207341153, 5147194204, 141939786588, 4304047703755, 142317774817901, 5095781837539766, 196403997108015332, 8106948166404074281, 356781439557643998591, 16675999433772328981216, 824952192369049982670686
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

These are covering loop-graphs where every connected component has a number of edges less than or equal to the number of vertices in that component. Also covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

For a unique choice we have A000272, covering case of A088957.
Without the choice condition we have A322661, unlabeled A322700.
For exactly n edges we have A333331 (maybe), complement A368596.
The case without loops is A367869, covering case of A133686.
This is the covering case of A368927.
The complement is counted by A369142, covering case of A369141.
The unlabeled version is the first differences of A369145.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A367862 counts graphs with n vertices and n edges, covering A367863.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(-x + 3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Inverse binomial transform of A368927.
Exponential transform of A369197.
E.g.f.: exp(-x)*exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A372167 Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).

Original entry on oeis.org

1, 0, 1, 3, 1, 22, 12, 6, 0, 1, 237, 220, 165, 70, 35, 30, 0, 10, 0, 0, 1, 3961, 5460, 5830, 4140, 2805, 2112, 1230, 720, 600, 180, 230, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 99900, 191975, 269220, 272055, 240485, 207095, 166005, 121530, 98770, 65905, 48503, 37065, 20055, 17570, 11445, 6552, 4410, 3570, 1680, 1785, 147, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Examples

			Triangle begins:
    1
    0
    1
    3    1
   22   12    6    0    1
  237  220  165   70   35   30    0   10    0    0    1
  ...
Row k = 4 counts the following graphs:
  12-34      12-13-14-23  12-13-14-23-24  .  12-13-14-23-24-34
  13-24      12-13-14-24  12-13-14-23-34
  14-23      12-13-14-34  12-13-14-24-34
  12-13-14   12-13-23-24  12-13-23-24-34
  12-13-24   12-13-23-34  12-14-23-24-34
  12-13-34   12-14-23-24  13-14-23-24-34
  12-14-23   12-14-24-34
  12-14-34   12-23-24-34
  12-23-24   13-14-23-34
  12-23-34   13-14-24-34
  12-24-34   13-23-24-34
  13-14-23   14-23-24-34
  13-14-24
  13-23-24
  13-23-34
  13-24-34
  14-23-24
  14-23-34
  14-24-34
  12-13-24-34
  12-14-23-34
  13-14-23-24
		

Crossrefs

Row sums are A006129, unlabeled A002494.
Row lengths are A050407.
Counting edges instead of triangles gives A054548, unlabeled A370167.
Column k = 0 is A372168 (non-covering A213434), unlabeled A372169.
Covering case of A372170, unlabeled A263340.
Column k = 1 is A372171 (non-covering A372172), unlabeled A372174.
The unlabeled version is A372173.
For all cycles (not just triangles) we have A372175, non-covering A372176.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A105784 counts acyclic covering graphs, unlabeled A144958.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}], MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n,0,5},{k,0,Binomial[n,3]}]

Formula

Inverse binomial transform of columns of A372170.

Extensions

a(42) onwards from Andrew Howroyd, Dec 29 2024

A372171 Number of labeled simple graphs covering n vertices with a unique triangle.

Original entry on oeis.org

0, 0, 0, 1, 12, 220, 5460, 191975, 9596160, 683389812, 69270116040
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2024

Keywords

Comments

The unlabeled version is A372174.

Examples

			The a(4) = 12 graphs:
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,14,23,24
  12,14,24,34
  12,23,24,34
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

Column k = 1 of A372167, unlabeled A372173.
For no triangles we have A372168 (non-covering A213434), unlabeled A372169.
The non-covering case is A372172, unlabeled A372194.
The unlabeled version is A372174.
For all cycles (not just triangles) we have A372195, non-covering A372193.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494
A054548 counts labeled covering graphs by edges, unlabeled A370167.
A105784 counts acyclic covering graphs, unlabeled A144958.
A372170 counts graphs by triangles, unlabeled A263340.
A372175 counts covering graphs by cycles, non-covering A372176.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Union@@#==Range[n]&&Length[cys[#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A372172.

Extensions

a(7)-a(10) from Andrew Howroyd, Aug 01 2024

A008791 a(n) = n^(n+5).

Original entry on oeis.org

0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

E.g.f.(x): T*(1 + 52*T + 328*T^2 + 444*T^3 + 120*T^4)*(1-T)^(-11); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^5/dx^5 {x^5/(T(x)^5*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015
Previous Showing 51-60 of 360 results. Next