cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A215271 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 8, 64, 512, 32768, 16777216, 549755813888, 9223372036854775808, 5070602400912917605986812821504, 46768052394588893382517914646921056628989841375232, 237142198758023568227473377297792835283496928595231875152809132048206089502588928
Offset: 0

Views

Author

Bruno Berselli, Aug 07 2012

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 7*sum {n = 1..inf} 1/8^floor(n*phi) (= 49*sum {n = 1..inf} floor(n/phi)/8^n) = 0.89040 80325 60827 28336 ... = 1/(1 + 1/(8 + 1/(8 + 1/(64 + 1/(512 + 1/(32768 + 1/(16777216 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/8^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [8^Fibonacci(n): n in [0..11]];
  • Maple
    a:= n-> 8^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]

Formula

a(n) = 8^Fibonacci(n).

A215272 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 9, 81, 729, 59049, 43046721, 2541865828329, 109418989131512359209, 278128389443693511257285776231761, 30432527221704537086371993251530170531786747066637049
Offset: 0

Views

Author

Bruno Berselli, Aug 07 2012

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 8*sum {n = 1..inf} 1/9^floor(n*phi) (= 64*sum {n = 1..inf} floor(n/phi)/9^n) = 0.90109 74122 99938 29901 ... = 1/(1 + 1/(9 + 1/(9 + 1/(81 + 1/(729 + 1/(59049 + 1/(43046721 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/9^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [9^Fibonacci(n): n in [0..10]];
    
  • Maple
    a:= n-> 9^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]
  • PARI
    a(n) = 9^fibonacci(n); \\ Jinyuan Wang, Apr 06 2019

Formula

a(n) = 9^Fibonacci(n).

A000304 a(n) = a(n-1)*a(n-2).

Original entry on oeis.org

2, 3, 6, 18, 108, 1944, 209952, 408146688, 85691213438976, 34974584955819144511488, 2997014624388697307377363936018956288, 104819342594514896999066634490728502944926883876041385836544
Offset: 2

Views

Author

Keywords

Comments

A038500(a(n)) = A010098(n-2); for n > 2: A006519(a(n)) = A000301(n-3); A001222(a(n)) = A000045(n-1). - Reinhard Zumkeller, Jul 06 2014

Crossrefs

Programs

  • Haskell
    a000304 n = a000304_list !! (n-2)
    a000304_list = 2 : 3 : zipWith (*) a000304_list (tail a000304_list)
    -- Reinhard Zumkeller, Jul 06 2014
  • Maple
    A000304 := proc(n) option remember; if n <=3 then n else A000304(n-1)*A000304(n-2); fi; end;
  • Mathematica
    nxt[{a_,b_}]:={b,a*b}; Transpose[NestList[nxt,{2,3},12]][[1]] (* Harvey P. Dale, Nov 16 2014 *)

Formula

For n>=4, a(n) = 2^A000045(n-3)*3^A000045(n-2). - Benoit Cloitre, Sep 26 2003
For n > 2: a(n) = A000301(n-3) * A010098(n-2). - Reinhard Zumkeller, Jul 06 2014

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Feb 17 2010

A010099 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 4, 16, 64, 1024, 65536, 67108864, 4398046511104, 295147905179352825856, 1298074214633706907132624082305024, 383123885216472214589586756787577295904684780545900544
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 3*sum {n = 1..inf} 1/4^floor(n*phi) (= 9*sum {n = 1..inf} floor(n/phi)/4^n) = 0.80938 42984 64421 90504 ... = 1/(1 + 1/(4 + 1/(4 + 1/(16 + 1/(64 + 1/(1024 + 1/(65536 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/4^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Maple
    a[ -1]:=1:a[0]:=4: a[1]:=4: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009

Formula

a(n) = 4^Fibonacci(n).

A124091 Decimal expansion of Fibonacci binary constant: Sum{i>=0} (1/2)^Fibonacci(i).

Original entry on oeis.org

2, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3, 0, 1, 2, 1, 4, 5, 9, 0, 2, 3, 3, 2, 8, 5, 1
Offset: 1

Views

Author

R. J. Mathar, Nov 25 2006

Keywords

Comments

This constant is transcendental, see A084119. - Charles R Greathouse IV, Nov 12 2014

Examples

			2.4102787972078658917940430244710631444834239245952787725932...
		

Crossrefs

Cf. A007404 (Kempner-Mahler number), A125600 (continued fraction), A084119 (essentially the same).
Cf. A000301.

Programs

  • Mathematica
    RealDigits[ N[ Sum[(1/2)^Fibonacci[i], {i, 0, Infinity}], 111]][[1]] (* Robert G. Wilson v, Nov 26 2006 *)
  • PARI
    a=0 ; for(n=0,30, a += .5^fibonacci(n) ; print(a) ; )
    
  • PARI
    default(realprecision, 20080); x=suminf(k=0, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b124091.txt", n, " ", d)) \\ Harry J. Smith, May 04 2009

Formula

Equals Sum_{i>=0} 1/2^A000045(i).
Equals A084119 + 1.

Extensions

More terms from Robert G. Wilson v, Nov 26 2006

A166470 a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).

Original entry on oeis.org

2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
Offset: 0

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Crossrefs

Subsequence of A025610 and hence of A003586 and A025487.

Programs

  • Magma
    [2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
    
  • Mathematica
    3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0,12]],2,1] (* Harvey P. Dale, Aug 20 2012 *)
  • PARI
    a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
    
  • SageMath
    [2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) = A000301(n+1)*A010098(n).
For n > 1, a(n) = a(n-1)*a(n-2).
For m > 1, n > 1, A166469(A002110(m)*(a(n)^k)/12) = k*Fibonacci(m+n).
A166469(a(n)) = Fibonacci(n+2) + 1 = A001611(n+2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
a(n) = A115033(2*n+1). - David Radcliffe, May 31 2025

Extensions

Typo corrected by Matthew Vandermast, Nov 07 2009

A249406 Start with a(1) = 1, and extend by the rule that the next term is the product of the two most recent non-terms of the sequence.

Original entry on oeis.org

1, 6, 20, 56, 90, 132, 182, 240, 306, 399, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8099, 8556, 8930, 9312
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2014

Keywords

Comments

Compare to A075326, where not products, but sums of the two most recent non-terms are considered;
a(195) = 159200 is the smallest even term not of the form m*(m+1); see also A249408, the set of all non-oblong terms of this sequence.
a(10) = 399 is the smallest odd term.

Crossrefs

Cf. A000301, A000304, A075326, A249055, A249407 (complement), subsequence of A002808.

Programs

  • Haskell
    import Data.List ((\\))
    a249406 n = a249406_list !! (n-1)
    a249406_list = 1 : f [2..] where
       f ws@(u:v:_) = y : f (ws \\ [u, v, y]) where y = u * v

A073115 Decimal expansion of sum(k>=0, 1/2^floor(k*phi) ) where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5, 3
Offset: 1

Views

Author

Benoit Cloitre, Aug 19 2002

Keywords

Comments

Number whose digits are obtained from the substitution system (1->(1,0),0->(1)).
The n-th term of the continued fraction is 2^Fibonacci(n-2) (cf. A000301).
This number is known to be transcendental.

Examples

			1.70980344286129131464178739944457559701250220576786...
		

References

  • S. Wolfram, "A new kind of science", p. 913

Programs

  • Mathematica
    Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]][[1]], 105] (* Jean-François Alcover, Jul 28 2011 *)
  • PARI
    phi=(1+sqrt(5))/2; suminf(n=0,2.^-(n*phi\1)) \\ Charles R Greathouse IV, Jul 22 2013
    
  • PARI
    phi=(1+sqrt(5))/2; suminf(n=1, (phi*n\1)/2^n) - 1 /* Michael Somos, May 22 2021 */

Formula

Equals 1 + A014565.

A000336 a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n.

Original entry on oeis.org

1, 2, 3, 4, 24, 576, 165888, 9172942848, 21035720123168587776, 18437563379178327736384102280592359424, 590180110002114158896983994712576414865667267958188575935810179040280576
Offset: 1

Views

Author

Keywords

Comments

The next term has 139 digits. - Harvey P. Dale, Jan 21 2019

Crossrefs

Programs

  • Maple
    A000336 := proc(n) option remember; if n <=4 then n else A000336(n-1)*A000336(n-2)*A000336(n-3)*A000336(n-4); fi; end;
  • Mathematica
    t = {1, 2, 3, 4}; Do[AppendTo[t, t[[-1]]*t[[-2]]*t[[-3]]*t[[-4]]], {n, 5, 15}] (* T. D. Noe, Jun 19 2012 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a b c d}; NestList[nxt,{1,2,3,4},10][[All,1]] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    a(n,a=[24,1,2,3,4])={for(n=6,n,a[n%5+1]=a[(n-1)%5+1]^2\a[n%5+1]);a[n%5+1]} \\ M. F. Hasler, Apr 22 2018
    
  • PARI
    first(n) = n = max(n, 5); my(res = vector(n)); for(i=1, 4, res[i] = i); res[5]=24; for(i = 6, n, res[i] = res[i-1]^2 / res[i - 5]); res \\ David A. Corneth, Apr 22 2018

Formula

a(n) = 2^A251656(n) * 3^A001631(n-1). - Vaclav Kotesovec, Feb 02 2016
a(n) = a(n-1)^2 / a(n-5), for n > 5. - M. F. Hasler, Apr 22 2018

A230900 a(n) = 2^Lucas(n).

Original entry on oeis.org

4, 2, 8, 16, 128, 2048, 262144, 536870912, 140737488355328, 75557863725914323419136, 10633823966279326983230456482242756608, 803469022129495137770981046170581301261101496891396417650688
Offset: 0

Views

Author

Peter Bala, Oct 31 2013

Keywords

Comments

Compare with A000301(n) = 2^Fibonacci(n).
The sequence a(n) for n >= 1 gives the sequence of partial quotients (other than the first) in the continued fraction expansion of the transcendental real constant c := sum {n >= 1} 1/2^floor(n*(5 + sqrt(5))/2) = 0.13385 44229 67609 80592 ... = 1/(7 + 1/(2 + 1/(8 + 1/(16 + 1/(128 + 1/(2048 + ...)))))). See Adams Davison 1977. Cf. A014565.
The constant c has various series representations including
c = 1 - sum {n >= 1} 1/2^floor(n*(5 - sqrt(5))/2),
c = sum {n >= 1} floor(n*(5 - sqrt(5))/10)/2^n,
c = 3 - sum {n >= 1} 1/2^floor(n*(15 - sqrt(5))/22) and
c = sum {n >= 1} 1/2^floor(n*(15 + sqrt(5))/22) - 2.

Crossrefs

Programs

  • Magma
    [2^(Lucas(n)): n in [0..10]]; // G. C. Greubel, Dec 22 2017
  • Maple
    a := proc(n) option remember; if n = 0 then 4 elif n = 1 then 2 else a(n-1)*a(n-2); fi; end; seq(a(n), n = 0..10);
  • Mathematica
    2^LucasL[Range[0,15]] (* Harvey P. Dale, Jul 21 2015 *)
  • PARI
    for(n=0,10, print1(2^(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017
    

Formula

a(n) = 2^Lucas(n) = 2^A000032(n).
Recurrence: a(n) = a(n-1)*a(n-2) with a(0) = 4, a(1) = 2.
Sum_{n>=1} 1/a(n) = A121821. - Amiram Eldar, Oct 27 2020
Previous Showing 11-20 of 40 results. Next