A215271 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=8.
1, 8, 8, 64, 512, 32768, 16777216, 549755813888, 9223372036854775808, 5070602400912917605986812821504, 46768052394588893382517914646921056628989841375232, 237142198758023568227473377297792835283496928595231875152809132048206089502588928
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..15
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
Crossrefs
Programs
-
Magma
[8^Fibonacci(n): n in [0..11]];
-
Maple
a:= n-> 8^(<<1|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]
Formula
a(n) = 8^Fibonacci(n).
Comments