1, 0, 0, 0, 0, 3, 0, 0, 0, 6, 3, 0, 0, 14, 12, 1, 0, 36, 39, 6, 0, 98, 120, 25, 0, 276, 363, 90, 0, 794, 1092, 301, 0, 2316, 3279, 966, 0, 6818, 9840, 3025, 0, 20196, 29523, 9330, 0, 60074, 88572, 28501, 0, 179196, 265719, 86526
Offset: 0
A372118
Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0
Square array A(n, k) starts:
n\k : 0 1 2 3 4 5 6 7
=======================================================================
0 : 1 1 1 1 1 1 1 1
1 : 3 6 9 12 15 18 21 24
2 : 7 25 55 97 151 217 295 385
3 : 15 90 285 660 1275 2190 3465 5160
4 : 31 301 1351 4081 9751 19981 36751 62401
5 : 63 966 6069 23772 70035 170898 365001 706104
6 : 127 3025 26335 133057 481951 1398097 3463615 7628545
7 : 255 9330 111645 724260 3216795 11075670 31794105 79669320
etc.
-
A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
-
A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2
A383841
Expansion of 1/((1-x) * (1-2*x) * (1-3*x))^2.
Original entry on oeis.org
1, 12, 86, 480, 2307, 10044, 40792, 157440, 584693, 2107596, 7420218, 25634880, 87207559, 292924668, 973531964, 3206704800, 10482373305, 34042285260, 109930177630, 353238247200, 1130137576331, 3601849005372, 11440208166816, 36225346150080, 114391746903037, 360325587293004
Offset: 0
-
a(n) = sum(k=0, n, stirling(k+3, 3, 2)*stirling(n-k+3, 3, 2));
A016198
Expansion of g.f. 1/((1-x)*(1-2*x)*(1-5*x)).
Original entry on oeis.org
1, 8, 47, 250, 1281, 6468, 32467, 162590, 813461, 4068328, 20343687, 101722530, 508620841, 2543120588, 12715635707, 63578244070, 317891351421, 1589457019248, 7947285620527, 39736429151210, 198682147853201, 993410743460308, 4967053725690147, 24835268645227950
Offset: 0
Cf.
A000225,
A000392,
A002275,
A002452,
A003462,
A003463,
A003464,
A016123,
A016125,
A016208,
A016209,
A016218,
A016256,
A023000,
A023001.
A118979
O.g.f: -12*x^3/(-1+x)/(-1+2*x)/(-1+3*x) = -2-2/(-1+3*x)-6/(-1+x)+6/(-1+2*x) .
Original entry on oeis.org
12, 72, 300, 1080, 3612, 11592, 36300, 111960, 342012, 1038312, 3139500, 9467640, 28501212, 85700232, 257493900, 773268120, 2321377212, 6967277352, 20908123500, 62736953400, 188236026012, 564758409672, 1694375892300
Offset: 3
-
M = {{1, 1, 1}, {2^n, 4, 2}, {3^n, 9, 3}} a = Table[ -Det[M], {n, 3, 30}]
A126679
Product_{i=3..n} Stirling_2(i,3).
Original entry on oeis.org
1, 6, 150, 13500, 4063500, 3925341000, 11874156525000, 110785880378250000, 3157508376660503250000, 273206569798926704209500000, 71477668823644198988810437500000, 56393736371790563676201770874375000000, 133940819650376139577910502205498936875000000, 956563276525616170757609342853980880495071250000000
Offset: 3
A133789
Let P(A) denote the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, 1) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 2) x and y intersect but for which x is not a subset of y and y is not a subset of x.
Original entry on oeis.org
0, 1, 4, 16, 70, 316, 1414, 6196, 26590, 112156, 466774, 1923076, 7863310, 31972396, 129459334, 522571156, 2104535230, 8460991036, 33972711094, 136277478436, 546270602350, 2188566048076, 8764718254054, 35090241492916, 140455083984670, 562102715143516
Offset: 0
a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then 6,20,6 then 8,28,56,70,56,28,8. [_Aaron Meyerowitz_, Oct 29 2013]
Edited by
N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.
A134063
a(n) = (1/2)*(3^n - 2^(n+1) + 3).
Original entry on oeis.org
1, 1, 2, 7, 26, 91, 302, 967, 3026, 9331, 28502, 86527, 261626, 788971, 2375102, 7141687, 21457826, 64439011, 193448102, 580606447, 1742343626, 5228079451, 15686335502, 47063200807, 141197991026, 423610750291, 1270865805302, 3812664524767, 11438127792026
Offset: 0
a(3) = 7 because for P(A) = {{},{1},{2},{1,2}} we have: case 0 {{1},{2}}, case 1 {{1},{1,2}}, {{2},{1,2}}, case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}.
-
f := n -> (1/2)*(3^n - 2^(n+1) + 3);
-
Table[(3^n-2^(n+1)+3)/2,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,1,2},30] (* Harvey P. Dale, May 05 2020 *)
Comments