cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 237 results. Next

A155572 Intersection of A000404, A154777 and A154778: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 5f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

41, 89, 164, 225, 241, 281, 356, 369, 401, 409, 449, 521, 569, 601, 641, 656, 761, 769, 801, 809, 881, 900, 929, 964, 1009, 1025, 1049, 1124, 1129, 1201, 1249, 1289, 1321, 1361, 1409, 1424, 1476, 1481, 1489, 1521, 1601, 1604, 1609, 1636, 1681, 1721, 1796
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155572(n,/* optional 2nd arg allows us to get other sequences */c=[5,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155572(n) & print1(n","))

A155573 Intersection of A000404, A154777 and A092572: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 3f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

73, 97, 193, 241, 292, 313, 337, 388, 409, 433, 457, 577, 601, 657, 673, 769, 772, 873, 900, 937, 964, 1009, 1033, 1129, 1153, 1156, 1168, 1201, 1249, 1252, 1297, 1321, 1348, 1489, 1521, 1552, 1609, 1636, 1657, 1732, 1737, 1753, 1777, 1801, 1825, 1828
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155573(n,/* optional 2nd arg allows us to get other sequences */c=[3,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155573(n) & print1(n","))

A160006 a(n) = least number b such that A000404(n) = b^2+c^2, 0 < b <= c.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 4, 2, 3, 5, 1, 2, 6, 3, 5, 4, 1, 2, 5, 3, 4, 7, 6, 1, 2, 5, 3, 7, 4, 6, 1, 2, 8, 3, 6, 4, 1, 5, 2, 7, 3, 6, 4, 9, 8, 5, 1, 2, 3, 6, 9, 4, 7, 5, 1, 2, 9, 3, 8, 4, 7, 5, 9, 1, 2, 6, 8, 3, 4, 11, 10, 7, 5, 1, 2, 6, 3, 10, 4, 7, 9, 5, 12, 8, 1, 6, 2, 10, 3, 4, 9
Offset: 1

Views

Author

Zak Seidov, Apr 29 2009

Keywords

Examples

			a(1)=1 because A000404(1)=2=1^2+1^2,
a(2)=1 because A000404(2)=5=1^2+2^2,
a(3)=2 because A000404(3)=8=2^2+2^2,
a(9932)=141 (maximal value for n<=10000) because A000404(9932)=39762=141^2+141^2.
		

Crossrefs

A000404 Numbers that are the sum of 2 nonzero squares.

A353198 Intersection of A000404 and A024614.

Original entry on oeis.org

13, 37, 52, 61, 73, 97, 109, 117, 148, 157, 169, 181, 193, 208, 229, 241, 244, 277, 292, 313, 325, 333, 337, 349, 373, 388, 397, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 628, 637, 657, 661, 673, 676, 709, 724, 733, 757, 769, 772, 793, 829, 832, 853, 873, 877
Offset: 1

Views

Author

Steven Lu, May 16 2022

Keywords

Comments

A000404 lists the numbers that are the squares of Euclidean distances between two lattice points on a square grid, the segment between which is not parallel to either axis, and thus the square grid could be divided into such number of parts symmetrically, periodically and nontrivially. Similarly, A024614 lists the numbers that are the squares of Euclidean distances between two lattice points on a hexagonal grid, the segment between which is not parallel to any of the axes.
Thus this sequence lists the numbers into which both the square grid and hexagonal one could be divided.
This sequence contains all the prime numbers of the form p = 12*k + 1 and, for each such prime, all composites of the form c = j^2*p.

Examples

			The square grid (or the Gaussian integers) can be divided into 13 parts, where the k-th part consists of grid points of the form (k + 3*n + 2*m, 2*n - 3*m) where n, m are integers. Similarly the hexagonal grid can be also divided into 13 parts, where the k-th part consists of points of the form (k + 7/2*n + m, sqrt(3)/2*n + 2*sqrt(3)*m).
		

Crossrefs

Programs

  • Mathematica
    Select[Intersection[
      Sort[DeleteDuplicates[
        Flatten[Table[i^2 + j^2, {i, 1000}, {j, 1000}]]]],
      Sort[DeleteDuplicates[
        Flatten[Table[i^2 + i j + j^2, {i, 1000}, {j, 1000}]]]]], # <=
       10000 &]

A001481 Numbers that are the sum of 2 squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that n = x^2 + y^2 has a solution in nonnegative integers x, y.
Closed under multiplication. - David W. Wilson, Dec 20 2004
Also, numbers whose cubes are the sum of 2 squares. - Artur Jasinski, Nov 21 2006 (Cf. A125110.)
Terms are the squares of smallest radii of circles covering (on a square grid) a number of points equal to the terms of A057961. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Apr 16 2007. [Comment corrected by T. D. Noe, Mar 28 2008]
Numbers with more 4k+1 divisors than 4k+3 divisors. If a(n) is a member of this sequence, then so too is any power of a(n). - Ant King, Oct 05 2010
A000161(a(n)) > 0; A070176(a(n)) = 0. - Reinhard Zumkeller, Feb 04 2012, Aug 16 2011
Numbers that are the norms of Gaussian integers. This sequence has unique factorization; the primitive elements are A055025. - Franklin T. Adams-Watters, Nov 25 2011
These are numbers n such that all of n's odd prime factors congruent to 3 modulo 4 occur to an even exponent (Fermat's two-squares theorem). - Jean-Christophe Hervé, May 01 2013
Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. The present sequence without 0 is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. Then A055025 (norms of Gaussian primes) gives the "prime divisors" of the square lattice. - Jean-Christophe Hervé, May 01 2013
For any i,j > 0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - Boris Putievskiy, May 05 2013
The sequence is closed under multiplication. Primitive elements are in A055025. The sequence can be split into 3 multiplicatively closed subsequences: {0}, A004431 and A125853. - Jean-Christophe Hervé, Nov 17 2013
Generalizing Jasinski's comment, same as numbers whose odd powers are the sum of 2 squares, by Fermat's two-squares theorem. - Jonathan Sondow, Jan 24 2014
By the 4 squares theorem, every nonnegative integer can be expressed as the sum of two elements of this sequence. - Franklin T. Adams-Watters, Mar 28 2015
There are never more than 3 consecutive terms. Runs of 3 terms start at 0, 8, 16, 72, ... (A082982). - Ivan Neretin, Nov 09 2015
Conjecture: barring the 0+2, 0+4, 0+8, 0+16, ... sequence, the sum of 2 distinct terms in this sequence is never a power of 2. - J. Lowell, Jan 14 2022
All the areas of squares whose vertices have integer coordinates. - Neeme Vaino, Jun 14 2023
Numbers represented by the definite binary quadratic forms x^2 + 2nxy + (n^2+1)y^2 for any integer n. This sequence contains the even powers of any integer. An odd power of a number appears only if the number itself belongs to the sequence. The equation given in the comment by Boris Putievskiy 2013 is Brahmagupta's identity with n = 1. It proves that any set of numbers of the form a^2 + nb^2 is closed under multiplication. - Klaus Purath, Sep 06 2023

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. Euler, (E388) Vollständige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 417.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
  • G. H. Hardy, Ramanujan, pp. 60-63.
  • P. Moree and J. Cazaran, On a claim of Ramanujan in his first letter to Hardy, Expos. Math. 17 (1999), pp. 289-312.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Disjoint union of A000290 and A000415.
Complement of A022544.
A000404 gives another version. Subsequence of A091072, supersequence of A046711.
Column k=2 of A336820.

Programs

  • Haskell
    a001481 n = a001481_list !! (n-1)
    a001481_list = [x | x <- [0..], a000161 x > 0]
    -- Reinhard Zumkeller, Feb 14 2012, Aug 16 2011
    
  • Magma
    [n: n in [0..160] | NormEquation(1, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    readlib(issqr): for n from 0 to 160 do for k from 0 to floor(sqrt(n)) do if issqr(n-k^2) then printf(`%d,`,n); break fi: od: od:
  • Mathematica
    upTo = 160; With[{max = Ceiling[Sqrt[upTo]]}, Select[Union[Total /@ (Tuples[Range[0, max], {2}]^2)], # <= upTo &]]  (* Harvey P. Dale, Apr 22 2011 *)
    Select[Range[0, 160], SquaresR[2, #] != 0 &] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    isA001481(n)=local(x,r);x=0;r=0;while(x<=sqrt(n) && r==0,if(issquare(n-x^2),r=1);x++);r \\ Michael B. Porter, Oct 31 2009
    
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]%2 && f[i,1]%4==3, return(0))); 1 \\ Charles R Greathouse IV, Aug 24 2012
    
  • PARI
    B=bnfinit('z^2+1,1);
    is(n)=#bnfisintnorm(B,n) \\ Ralf Stephan, Oct 18 2013, edited by M. F. Hasler, Nov 21 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(m=0,sqrtint(lim\=1), t=m^2; for(n=0, min(sqrtint(lim-t),m), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Jan 05 2016
    
  • PARI
    is_A001481(n)=!for(i=2-bittest(n,0),#n=factor(n)~, bittest(n[1,i],1)&&bittest(n[2,i],0)&&return) \\ M. F. Hasler, Nov 20 2017
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A001481_gen(): # generator of terms
        return filter(lambda n:(lambda m:all(d & 3 != 3 or m[d] & 1 == 0 for d in m))(factorint(n)),count(0))
    A001481_list = list(islice(A001481_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

n = square * 2^{0 or 1} * {product of distinct primes == 1 (mod 4)}.
The number of integers less than N that are sums of two squares is asymptotic to constant*N/sqrt(log(N)), hence lim_{n->infinity} a(n)/n = infinity.
Nonzero terms in expansion of Dirichlet series Product_p (1 - (Kronecker(m, p) + 1)*p^(-s) + Kronecker(m, p)*p^(-2s))^(-1) for m = -1.
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533. - Charles R Greathouse IV, Apr 16 2012
There are B(x) = x/sqrt(log x) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. - Charles R Greathouse IV, Nov 18 2022

Extensions

Deleted an incorrect comment. - N. J. A. Sloane, Oct 03 2023

A002313 Primes congruent to 1 or 2 modulo 4; or, primes of form x^2 + y^2; or, -1 is a square mod p.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Or, primes p such that x^2 - p*y^2 represents -1.
Primes which are not Gaussian primes (meaning not congruent to 3 mod 4).
Every Fibonacci prime (with the exception of F(4) = 3) is in the sequence. If p = 2n+1 is the prime index of the Fibonacci prime, then F(2n+1) = F(n)^2 + F(n+1)^2 is the unique representation of the prime as sum of two squares. - Sven Simon, Nov 30 2003
Except for 2, primes of the form x^2 + 4y^2. See A140633. - T. D. Noe, May 19 2008
Primes p such that for all p > 2, p XOR 2 = p + 2. - Brad Clardy, Oct 25 2011
Greatest prime divisor of r^2 + 1 for some r. - Michel Lagneau, Sep 30 2012
Empirical result: a(n), as a set, compose the prime factors of the family of sequences produced by A005408(j)^2 + A005408(j+k)^2 = (2j+1)^2 + (2j+2k+1)^2, for j >= 0, and a given k >= 1 for each sequence, with the addition of the prime factors of k if not already in a(n). - Richard R. Forberg, Feb 09 2015
Primes such that when r is a primitive root then p-r is also a primitive root. - Emmanuel Vantieghem, Aug 13 2015
Primes of the form (x^2 + y^2)/2. Note that (x^2 + y^2)/2 = ((x+y)/2)^2 + ((x-y)/2)^2 = a^2 + b^2 with x = a + b and y = a - b. More generally, primes of the form (x^2 + y^2) / A001481(n) for every fixed n > 1. - Thomas Ordowski, Jul 03 2016
Numbers n such that ((n-2)!!)^2 == -1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-1)!! == (p-2)!! (mod p). - Thomas Ordowski, Jul 28 2016
The product of 2 different terms (x^2 + y^2)(z^2 + v^2) = (xz + yv)^2 + (xv - yz)^2 is sum of 2 squares (A000404) because (xv - yz)^2 > 0. If x were equal to yz/v then (x^2 + y^2)/(z^2 + v^2) would be equal to ((yz/v)^2 + y^2)/(z^2 + v^2) = y^2/v^2 which is not possible because (x^2 + y^2) and (z^2 + v^2) are prime numbers. For example, (2^2 + 5^2)(4^2 + 9^2) = (2*4 + 5*9)^2 + (2*9 - 5*4)^2. - Jerzy R Borysowicz, Mar 21 2017

Examples

			13 is in the sequence since it is prime and 13 = 4*3 + 1.  Also 13 = 2^2 + 3^2.  And -1 is a square (mod 13): -1 + 2*13 = 25 = 5^2.  Of course, only the first term is congruent to 2 (mod 4). - _Michael B. Porter_, Jul 04 2016
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 872.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, same as A002144. For values of x and y see A002330 and A002331.

Programs

  • Haskell
    a002313 n = a002313_list !! (n-1)
    a002313_list = filter ((`elem` [1,2]) . (`mod` 4)) a000040_list
    -- Reinhard Zumkeller, Feb 04 2014
    
  • Magma
    [p: p in PrimesUpTo(700) | p mod 4 in {1,2}]; // Vincenzo Librandi, Feb 18 2015
  • Maple
    with(numtheory): for n from 1 to 300 do if ithprime(n) mod 4 = 1 or ithprime(n) mod 4 = 2 then printf(`%d,`,ithprime(n)) fi; od:
    # alternative
    A002313 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2;
        elif n = 2 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a ;
                end if;
            end do:
        end if;
    end proc:
    seq(A002313(n),n=1..100) ; # R. J. Mathar, Feb 01 2024
  • Mathematica
    Select[ Prime@ Range@ 115, Mod[#, 4] != 3 &] (* Robert G. Wilson v *)
    fQ[n_] := Solve[x^2 + 1 == n*y^2, {x, y}, Integers] == {}; Select[ Prime@ Range@ 115, fQ] (* Robert G. Wilson v, Dec 19 2013 *)
  • PARI
    select(p->p%4!=3, primes(1000)) \\ Charles R Greathouse IV, Feb 11 2011
    

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Jul 04 2016
a(n) = A002331(n)^2 + A002330(n)^2. See crossrefs. - Wolfdieter Lang, Dec 11 2016

Extensions

More terms from Henry Bottomley, Aug 10 2000
More terms from James Sellers, Aug 22 2000

A000408 Numbers that are the sum of three nonzero squares.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29, 30, 33, 34, 35, 36, 38, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104
Offset: 1

Views

Author

Keywords

Comments

a(n) !== 7 (mod 8). - Boris Putievskiy, May 05 2013
A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
According to Halter-Koch (below), a number n is a sum of 3 squares, but not a sum of 3 nonzero squares (i.e., is in A000378 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1,2,5,10,13,25,37,58,85,130,?}, where ? denotes at most one unknown number that, if it exists, is > 5*10^10. - Jeffrey Shallit, Jan 15 2017

References

  • L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Dover, 2005, p. 267.
  • Savin Réalis, Answer to question 25 ("Toute puissance entière de 3 est une somme de trois carrés premiers avec 3"), Mathesis 1 (1881), pp. 87-88. (See also p. 73 where the question is posed.)

Crossrefs

Programs

  • Haskell
    a000408 n = a000408_list !! (n-1)
    a000408_list = filter ((> 0) . a025427) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    S:= series((JacobiTheta3(0,q)-1)^3,q,1001):
    select(t -> coeff(S,q,t)>0, [$1..N]); # Robert Israel, Jan 14 2016
  • Mathematica
    f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], ?Positive]];f[11] (* _Ray Chandler, Dec 06 2006 *)
    pr[n_] := Select[ PowersRepresentations[n, 3, 2], FreeQ[#, 0] &]; Select[ Range[104], pr[#] != {} &] (* Jean-François Alcover, Apr 04 2013 *)
    max = 1000; s = (EllipticTheta[3, 0, q] - 1)^3 + O[q]^(max+1); Select[ Range[max], SeriesCoefficient[s, {q, 0, #}] > 0 &] (* Jean-François Alcover, Feb 01 2016, after Robert Israel *)
  • PARI
    is(n)=for(x=sqrtint((n-1)\3)+1,sqrtint(n-2), for(y=1,sqrtint(n-x^2-1), if(issquare(n-x^2-y^2), return(1)))); 0 \\ Charles R Greathouse IV, Apr 04 2013
    
  • PARI
    is(n)= my(a, b) ; a=1 ; while(a^2+1Altug Alkan, Jan 18 2016
    
  • Python
    def aupto(lim):
      squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]
      sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
      sum3sqs = set(a+b for a in sum2sqs for b in squares)
      return sorted(set(range(lim+1)) & sum3sqs)
    print(aupto(104)) # Michael S. Branicky, Mar 06 2021

Formula

a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014; error term improved Jul 05 2024

A003072 Numbers that are the sum of 3 positive cubes.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
Offset: 1

Views

Author

Keywords

Comments

A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012

Examples

			a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
		

Crossrefs

Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
- squares: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2);
- cubes: A003325 (2, 3), A003072 (3, 3), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3);
- fourth powers: A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4);
- fifth powers: A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5);
- sixth powers: A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6);
- seventh powers: A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7);
- eighth powers: A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003386 (8, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8);
- ninth powers: A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9);
- tenth powers: A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10);
- eleventh powers: A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11).

Programs

  • Haskell
    a003072 n = a003072_list !! (n-1)
    a003072_list = filter c3 [1..] where
       c3 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ a003325_list
    -- Reinhard Zumkeller, Mar 24 2012
  • Maple
    isA003072 := proc(n)
        local x,y,z;
        for x from 1 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                if isA000578(n-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 1000 do
        if isA003072(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016
  • Mathematica
    Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
    With[{upto=500},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2,3]]]^3,3]],#<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
  • PARI
    sum(n=1,11,x^(n^3),O(x^1400))^3 /* Then [i|i<-[1..#%],polcoef(%,i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
    
  • PARI
    list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A009003 Hypotenuse numbers (squares are sums of 2 nonzero squares).

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137, 140
Offset: 1

Views

Author

Keywords

Comments

Multiples of Pythagorean primes A002144 or of primitive Pythagorean triangles' hypotenuses A008846. - Lekraj Beedassy, Nov 12 2003
This is exactly the sequence of positive integers with at least one prime divisor of the form 4k + 1. Compare A072592. - John W. Layman, Mar 12 2008 and Franklin T. Adams-Watters, Apr 26 2009
Circumradius R of the triangles such that the area, the sides and R are integers. - Michel Lagneau, Mar 03 2012
The 2 squares summing to a(n)^2 cannot be equal because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 4k + 1 with multiplicity one, which are also those for which there exists a unique integer triangle = A084645. - Jean-Christophe Hervé, Nov 11 2013
a(n) are numbers whose square is the mean of two distinct nonzero squares. This creates 1-to-1 mapping between a Pythagorean triple and a "Mean" triple. If the Pythagorean triple is written, abnormally, as {j, k, h} where j^2 +(j+k)^2 = h^2, and h = a(n), then the corresponding "Mean" triple with the same h is {k, 2j, h} where (k^2 + (k+2j)^2)/2 = h^2. For example for h = 5, the Pythagorean triple is {3, 1, 5} and the Mean triple is {1, 6, 5}. - Richard R. Forberg, Mar 01 2015
Integral side lengths of rhombuses with integral diagonals p and q (therefore also with integral areas A because A = pq/2 is some multiple of 24). No such rhombuses are squares. - Rick L. Shepherd, Apr 09 2017
Conjecture: these are bases n in which exists an n-adic integer x satisfying x^5 = x, and 5 is the smallest k>1 such that x^k =x (so x^2, x^3 and x^4 are not x). Example: the 10-adic integer x = ...499879186432 (A120817) satisfies x^5 = x, and x^2, x^3, and x^4 are not x, so 10 is in this sequence. See also A120817, A210850 and A331548. - Patrick A. Thomas, Mar 01 2020
Didactic comment: When students solve a quadratic equation a*x^2 + b*x + c = 0 (a, b, c: integers) with the solution formula, they often make the mistake of calculating b^2 + 4*a*c instead of b^2 - 4*a*c (especially if a or c is negative). If the root then turns out to be an integer, they feel safe. This sequence lists the absolute values of b for which this error can happen. Reasoning: With p^2 = b^2 - 4*a*c and q^2 = b^2 + 4*a*c it follows by addition immediately that p^2 + q^2 = 2*b^2. If 4*a*c < 0, let p = x + y and q = x - y. If 4*a*c > 0, let p = x - y and q = x + y. In both cases follows that y^2 + x^2 = b^2. So every Pythagorean triple gives an absolute value of b for which this error can occur. Example: From (y, x, b) = (3, 4, 5) follows (q^2, b^2, p^2) = (1, 25, 49) or (p^2, b^2, q^2) = (1, 25, 49) with abs(4*a*c) = 24. - Felix Huber, Jul 22 2023
Conjecture: Numbers m such that the limit: Limit_{s->1} zeta(s)*Sum_{k=1..m} [k|m]*A008683(k)*(i^k)/(k^(s - 1)) exists, which is equivalent to numbers m such that abs(Sum_{k=1..m} [k|m]*A008683(k)*(i^k)) = 0. - Mats Granvik, Jul 06 2024

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.

Crossrefs

Cf. A000404 (sums of 2 squares), A004431 (sums of 2 distinct squares), A009000 (hypotenuse numbers with repetition), A072592, A004613, A187811.
Complement of A004144. Primes in this sequence give A002144. Same as A146984 (integer contraharmonic means) as sets - see Pahikkala 2010, Theorem 5.
Cf. A083025, A084645 (primitive elements), A084646, A084647, A084648, A084649, A006339.

Programs

  • Haskell
    import Data.List (findIndices)
    a009003 n = a009003_list !! (n-1)
    a009003_list = map (+ 1) $ findIndices (> 0) a005089_list
    -- Reinhard Zumkeller, Jan 07 2013
    
  • Maple
    isA009003 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if modp(p,4) = 1 then
                return true;
            end if;
        end do:
        false;
    end proc:
    for n from 1 to 200 do
        if isA009003(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 17 2014
  • Mathematica
    f[n_] := Module[{k = 1}, While[(n - k^2)^(1/2) != IntegerPart[(n - k^2)^(1/2)], k++; If[2 * k^2 >= n, k = 0; Break[]]]; k]; A009003 = {}; Do[If[f[n^2] > 0, AppendTo[A009003, n]], {n, 3, 100}]; A009003 (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *)
  • PARI
    is_A009003(n)=setsearch(Set(factor(n)[,1]%4),1)  \\ M. F. Hasler, May 27 2012
    
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\=1)); forprimestep(p=5,lim,4, forstep(n=p,lim,p, u[n]=1)); for(i=5,lim, if(u[i], listput(v,i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A009003_gen(): # generator of terms
        return filter(lambda n:any(map(lambda p: p % 4 == 1,primefactors(n))),count(1))
    A009003_list = list(islice(A009003_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

A005089(a(n)) > 0. - Reinhard Zumkeller, Jan 07 2013
a(n) ~ n. - Charles R Greathouse IV, Jan 13 2022
a(n) = sqrt(n-th square in A000404), where A000404 lists the sums of two nonzero squares. - M. F. Hasler, Jun 20 2025

Extensions

Definition edited by Jean-Christophe Hervé, Nov 10 2013

A003336 Numbers that are the sum of 2 positive 4th powers.

Original entry on oeis.org

2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8192, 8962, 10001, 10016, 10081, 10256, 10625
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k = x^4 + y^4 has a solution in positive integers x, y.
There are no squares in this sequence. - Altug Alkan, Apr 08 2016
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
16378801 is in the sequence as 16378801 = 43^4 + 60^4.
39126977 is in the sequence as 39126977 = 49^4 + 76^4.
71769617 is in the sequence as 71769617 = 19^4 + 92^4. (End)
		

Crossrefs

5906 is the first term in A060387 but not in this sequence. Cf. A020897.
Cf. A088687 (2 distinct 4th powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Cf. A000583 (4th powers).

Programs

  • Mathematica
    nn=12; Select[Union[Plus@@@(Tuples[Range[nn],{2}]^4)], # <= nn^4&] (* Harvey P. Dale, Dec 29 2010 *)
    Select[Range@ 11000, Length[PowersRepresentations[#, 2, 4] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Apr 08 2016 *)
  • PARI
    list(lim)=my(v=List()); for(x=1, sqrtnint(lim\=1,4), for(y=1, min(sqrtnint(lim-x^4,4), x), listput(v, x^4+y^4))); Set(v) \\ Charles R Greathouse IV, Apr 24 2012; updated July 13 2024
    
  • PARI
    T=thueinit('x^4+1,1);
    is(n)=#thue(T,n)>0 && !issquare(n) \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    def aupto(lim):
      p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
      p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
      return sorted(p2)
    print(aupto(10625)) # Michael S. Branicky, Mar 18 2021

Formula

{i: A216284(i) > 0}. - R. J. Mathar, Jun 04 2021
Previous Showing 21-30 of 237 results. Next