cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A070262 5th diagonal of triangle defined in A051537.

Original entry on oeis.org

5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675, 2805, 182, 3021, 783
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Crossrefs

Cf. A061037. [From R. J. Mathar, Sep 29 2008]

Programs

  • Magma
    [LCM(n + 4, n)/GCD(n + 4, n): n in [1..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[ LCM[i + 4, i] / GCD[i + 4, i], {i, 1, 60}]
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{5,3,21,2,45,15,77,6,117,35,165,12},90] (* Harvey P. Dale, Jul 13 2019 *)
  • PARI
    Vec(x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017
    
  • PARI
    a(n) = lcm(n+4,n)/gcd(n+4,n); \\ Altug Alkan, Sep 20 2018
    

Formula

a(n) = lcm(n + 4, n) / gcd(n + 4, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n>12. (End)
From Luce ETIENNE, May 10 2018: (Start)
a(n) = n*(n+4)*4^((5*(n mod 4)^3 - 24*(n mod 4)^2 + 31*(n mod 4)-12)/6).
a(n) = n*(n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. (End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 11/6.
Sum_{n>=1} (-1)^n/a(n) = 7/6.
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)

Extensions

Edited by Robert G. Wilson v, May 10 2002

A142717 First (leftmost) odd term in the n-th row of triangle A120070.

Original entry on oeis.org

3, 5, 15, 21, 35, 45, 63, 77, 99, 117, 143, 165, 195, 221, 255, 285, 323, 357, 399, 437, 483, 525, 575, 621, 675, 725, 783, 837, 899, 957, 1023, 1085, 1155, 1221, 1295, 1365, 1443, 1517, 1599, 1677, 1763, 1845, 1935, 2021, 2115, 2205, 2303, 2397, 2499, 2597
Offset: 1

Views

Author

Paul Curtz, Sep 26 2008

Keywords

Comments

Also: Records sequence of A100181.
The last (rightmost) term in the n-th row of triangle A120070 is A005408(n).

Examples

			The odd terms of A120070 build the irregular triangle
  3;
  5;
  15,7;
  21,9;
  35,27,11;
  45,33,13;
  63,55,39,15;
The leftmost column defines this sequence.
		

Crossrefs

Programs

  • Mathematica
    A142717[n_]:=(n+1)^2-If[OddQ[n],1,4];Array[A142717,100] (* or *)
    LinearRecurrence[{2,0,-2,1},{3,5,15,21},100] (* Paolo Xausa, Dec 05 2023 *)

Formula

First differences: a(n+1)-a(n) = A142954(n).
From R. J. Mathar, Oct 24 2008: (Start)
a(n) = (n+1)^2-1 = A000466((n+1)/2) if n odd.
a(n) = (n+1)^2-4 = A078371(n/2-1) if n even.
a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: x(3-x+5x^2-3x^3)/((1+x)(1-x)^3). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008

A302488 Total domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 72, 81, 90, 99, 110, 121, 132, 143, 156, 169, 182, 195, 210, 225, 240, 255, 272, 289, 306, 323, 342, 361, 380, 399, 420, 441, 462, 483, 506, 529, 552, 575, 600, 625, 650, 675, 702, 729, 756, 783, 812, 841, 870, 899, 930
Offset: 0

Views

Author

Eric W. Weisstein, Apr 08 2018

Keywords

Comments

Extended to a(0) and a(1) using the formula/recurrence. The total domination number of the 1 X 1 grid graph is undefined.

Crossrefs

Main diagonal of A300358.
The four quadrasections are A002943, A016754, A002939(n+1), A000466(n+1).
Bisections are A002378 and A085046.
Cf. A303142.

Programs

  • Magma
    R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [0..30]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 0, 20}]
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 2, 3, 6, 9}, 20]
    CoefficientList[Series[x (-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]
  • PARI
    for(n=0,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ G. C. Greubel, Apr 09 2018
    
  • PARI
    a(n)=my(m=n\4); (2*m+1)*(2*m + n%4) \\ Andrew Howroyd, Aug 17 2025
    

Formula

a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
G.f.: x*(1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(4*m + r) = (2*m + 1)*(2*m + r) for 0 <= r < 4. - Charles Kusniec, Aug 16 2025
From Amiram Eldar, Aug 26 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 + 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/8 - 1/2. (End)

Extensions

a(0)=0 prepended and offset corrected by Andrew Howroyd, Aug 17 2025

A069075 a(n) = (4*n^2 - 1)^2.

Original entry on oeis.org

1, 9, 225, 1225, 3969, 9801, 20449, 38025, 65025, 104329, 159201, 233289, 330625, 455625, 613089, 808201, 1046529, 1334025, 1677025, 2082249, 2556801, 3108169, 3744225, 4473225, 5303809, 6245001, 7306209, 8497225, 9828225, 11309769
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Products of squares of 2 successive odd numbers. - Peter Munn, Nov 17 2019

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Konrad Knopp, Theory and application of infinite series, Dover, 1990, p. 269.

Crossrefs

Programs

  • Mathematica
    (4*Range[0,30]^2-1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,9,225,1225,3969},30] (* Harvey P. Dale, Feb 23 2018 *)

Formula

Sum_{n>=1} 1/a(n) = (Pi^2 - 8)/16 = 0.1168502750680... (A123092) [Jolley eq. 247]
G.f.: (-1 - 4*x - 190*x^2 - 180*x^3 - 9*x^4) / (x-1)^5. - R. J. Mathar, Oct 03 2011
a(n) = A000466(n)^2. - Peter Munn, Nov 17 2019
E.g.f.: exp(x)*(1 + 8*x + 104*x^2 + 96*x^3 + 16*x^4). - Stefano Spezia, Nov 17 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + 1/2. - Amiram Eldar, Feb 08 2022

A085027 a(n) = (4*n+3)*(4*n+7).

Original entry on oeis.org

21, 77, 165, 285, 437, 621, 837, 1085, 1365, 1677, 2021, 2397, 2805, 3245, 3717, 4221, 4757, 5325, 5925, 6557, 7221, 7917, 8645, 9405, 10197, 11021, 11877, 12765, 13685, 14637, 15621, 16637, 17685, 18765, 19877, 21021, 22197, 23405, 24645, 25917, 27221, 28557, 29925, 31325, 32757, 34221
Offset: 0

Views

Author

Gary W. Adamson, Jun 19 2003

Keywords

Comments

1 = 3/7 + Sum_{n>=1} 16/a(n) = 3/7 + 16/77 + 16/165 + 16/285...+...; with partial sums: 3/7, 7/11, 11/15, 15/19, 19/23, ...(4n+3)/(4n+7), ... ==> 1.
With A003185(n) = (4*n+1)*(4*n+5), a bisection of A078371(n) which is a bisection of A061037(n+2).
A quadrisection of A061037(n+2). After A002378(n), A003185(n) and A000466(n+1). - Paul Curtz, Mar 30 2011

Examples

			21 = (3)(7), 77 = (7)(11), 165 = (11)(15), 285 = (15)(19), 437 = (19)(23)...
		

Crossrefs

Programs

Formula

a(n) = 16*n^2+40*n+21. - Vincenzo Librandi, Aug 13 2011
From Colin Barker, Jul 11 2012: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: (21+14*x-3*x^2)/(1-x)^3. (End)
E.g.f.: (21 +56*x +16*x^2)*exp(x). - G. C. Greubel, Sep 20 2018
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(8*sqrt(2)) + log(sqrt(2)-1)/(4*sqrt(2)) - 1/12. (End)

A198148 a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.

Original entry on oeis.org

0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
Offset: 0

Views

Author

Paul Curtz, Oct 21 2011

Keywords

Comments

See, in A181318(n), A060819(n)*A060819(n+p): A060819(n)^2, A064038(n), a(n), A160050(n), A061037(n), A178242(n). The second differences a(n+2)-2*a(n+1)+a(n) = -5, 16, -26, 44, -61, 86, -110, 142, -173, 212, -250, 296, -341, 394, -446, 506, taken modulo 9 are periodic with the palindromic period 4, 7, 1, 8, 2, 5, 7, 7, 7, 5, 2, 8, 1, 7, 4.

Crossrefs

Programs

Formula

a(n) = A060819(n)*A060819(n+2).
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
a(n) = A142705(n) / A000034(n+1).
a(n) = A005563(n) / A010689(n+1). - Franklin T. Adams-Watters, Oct 21 2011
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n)*a(n+1) = a(A028552(n)) = A050534(n+2). - Bruno Berselli, Oct 26 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022

A226023 A142705 (numerators of 1/4-1/(4n^2)) sorted to natural order.

Original entry on oeis.org

0, 2, 3, 6, 12, 15, 20, 30, 35, 42, 56, 63, 72, 90, 99, 110, 132, 143, 156, 182, 195, 210, 240, 255, 272, 306, 323, 342, 380, 399, 420, 462, 483, 506, 552, 575, 600, 650, 675, 702, 756, 783, 812, 870, 899
Offset: 0

Views

Author

Paul Curtz, May 23 2013

Keywords

Comments

A198442(n) without indices 4*n+2.
a(n)/A130823(n+1) = 0, 2,3,2, 4,5,4, 6,7,6, 8,9,8, ... (equal to A133310+1, after 0; see also A008611).
-1, 0, 2, 3, is divisible by 1 (for a(-1)=-1),
3, 6, 12, 15, 3,
15, 20, 30, 35 5,
35, 42, 56, 63 7,
63, 72, 90, 99 9,
99, 110, 132, 143, 11, etc.
First column: A000466(n),
second column: A002943(n),
third column: A002939(n+1),
fourth column: A000466(n+1).
a(n) is also the numerator of 1/4-1/(4*n+2)^2: 0/1, 2/9, 3/16, 6/25, 12/49, 15/64, 20/81, 30/121, 35/144, 42/169, 56/225,...
The n-th denominator is equal to 4*a(n) + A146325(n+2).
Note that the differences of a(n-1): 1, 2, 1, 3, 6, 3, 5, 10, 5, 7, 14, 7, 9, 18, 9, 11, 22,... (from A043547 by pairs and 2*n+1) has the same recurrence.
(Of course every sequence which obeys a linear recurrence with constant coefficients has first differences that obey the same linear recurrence. - R. J. Mathar, Jun 14 2013)

Crossrefs

Trisections: A002939, A000466, A002943.

Programs

  • Maple
    A226023 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[0,2,3,6,12,15,20]) ;
        else
            procname(n-1)+2*procname(n-3)-2*procname(n-4)-procname(n-6)+procname(n-7) ;
        end if;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    A226023[n_]:=Floor[(2n+1)/3]Floor[(2n+5)/3];
    Array[A226023,100,0] (* Paolo Xausa, Dec 05 2023 *)

Formula

a(n) = floor( (2*n + 1)/3 ) * floor( (2*n + 5)/3 ) = A004396(n) * A004396(n+2).
Recurrences: a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7).
a(n+15) - a(n) = 10*A042968(n+8).
a(n+1) - a(n-2) = 2*A042968(n) with a(-2)=0, a(-1)=-1.
G.f.: x*(2+x+3*x^2+2*x^3+x^4-x^5)/((1-x)^3 * (1+x+x^2)^2). [Ralf Stephan, May 24 2013]

A070260 Third diagonal of triangle defined in A051537.

Original entry on oeis.org

3, 2, 15, 6, 35, 12, 63, 20, 99, 30, 143, 42, 195, 56, 255, 72, 323, 90, 399, 110, 483, 132, 575, 156, 675, 182, 783, 210, 899, 240, 1023, 272, 1155, 306, 1295, 342, 1443, 380, 1599, 420, 1763, 462, 1935, 506, 2115, 552, 2303, 600, 2499, 650, 2703, 702
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Crossrefs

Bisections: A002378, A000466.
Cf. A051537.

Programs

  • Mathematica
    Table[ LCM[i + 2, i] / GCD[i + 2, i], {i, 1, 60}]
    LinearRecurrence[{0,3,0,-3,0,1},{3,2,15,6,35,12},60] (* Harvey P. Dale, Sep 14 2019 *)
  • PARI
    Vec(x*(3+2*x+6*x^2-x^4) / (1-x^2)^3 + O(x^60)) \\ Colin Barker, Mar 27 2017

Formula

From Vladeta Jovovic, May 09 2002: (Start)
a(n) = n*(n+2)/4 if n is even else n*(n+2).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(3 + 2*x + 6*x^2 - x^4)/(1 - x^2)^3. (End)
E.g.f.: (x/4)*((12 + x)*cosh(x) + (3 + 4*x)*sinh(x)). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 3/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2.
Sum_{k=1..n} a(k) ~ (5/24) * n^3. (End)

Extensions

More terms from Vladeta Jovovic, May 09 2002

A108100 a(n) = (2*n-1)^2 + (2*n+1)^2.

Original entry on oeis.org

2, 10, 34, 74, 130, 202, 290, 394, 514, 650, 802, 970, 1154, 1354, 1570, 1802, 2050, 2314, 2594, 2890, 3202, 3530, 3874, 4234, 4610, 5002, 5410, 5834, 6274, 6730, 7202, 7690, 8194, 8714, 9250, 9802, 10370, 10954, 11554, 12170, 12802, 13450, 14114, 14794, 15490
Offset: 0

Views

Author

Dorthe Roel (dorthe_roel(AT)hotmail.com or dorthe.roel1(AT)skolekom.dk), Jun 07 2005

Keywords

Crossrefs

Apart from leading term, same as A008527.

Programs

Formula

From R. J. Mathar, Aug 24 2008: (Start)
O.g.f.: 2*(1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 2*A053755(n). (End)
a(n) = a(-n); a(n) + a(-n) = A158444(n). - Bruno Berselli, Sep 06 2011
a(n) = 2*(A000466(n) + 2). - Martin Ettl, Nov 12 2012
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 4*x + 4*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A158443 a(n) = 16*n^2 - 4.

Original entry on oeis.org

12, 60, 140, 252, 396, 572, 780, 1020, 1292, 1596, 1932, 2300, 2700, 3132, 3596, 4092, 4620, 5180, 5772, 6396, 7052, 7740, 8460, 9212, 9996, 10812, 11660, 12540, 13452, 14396, 15372, 16380, 17420, 18492, 19596, 20732, 21900, 23100, 24332, 25596, 26892, 28220, 29580
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (8*n^2 - 1)^2 - (16*n^2 - 4) *(2*n)^2 = 1 can be written as A157914(n)^2 - a(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 12, in the direction 12, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

  • Magma
    I:=[12, 60, 140]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    16Range[60]^2-4  (* Harvey P. Dale, Mar 18 2011 *)
  • PARI
    a(n) = 16*n^2 - 4.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 4*x*(3+6*x-x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi-2)/16. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x^2 + 4*x - 1) + 1).
a(n) = 4*A000466(n). (End)
Previous Showing 21-30 of 58 results. Next