A248727
A046802(x,y) --> A046802(x,y+1), transform of e.g.f. for the graded number of positroids of the totally nonnegative Grassmannians G+(k,n); enumerates faces of the stellahedra.
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 16, 24, 10, 1, 65, 130, 84, 19, 1, 326, 815, 720, 265, 36, 1, 1957, 5871, 6605, 3425, 803, 69, 1, 13700, 47950, 65646, 44240, 15106, 2394, 134, 1, 109601, 438404, 707840, 589106, 267134, 63896, 7094, 263, 1
Offset: 0
The triangle T(n, k) starts:
n\k 0 1 2 3 4 5 6 7 ...
1: 1
2: 2 1
3: 5 5 1
4: 16 24 10 1
5: 65 130 84 19 1
6: 326 815 720 265 36 1
7: 1957 5871 6605 3425 803 69 1
8: 13700 47950 65646 44240 15106 2394 134 1
... reformatted, _Wolfdieter Lang_, Mar 27 2015
- P. Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- L. Berry, S. Forcey, M. Ronco, and P. Showers, Polytopes and Hopf algebras of painted trees: Fan graphs and Stellohedra, arXiv:1608.08546 [math.CO], 2018.
- L. Berry, S. Forcey, M. Ronco, and P. Showers, Species substitution, graph suspension, and graded Hopf algebras of painted tree polytopes, arXiv:1608.08546 [math.CO], 2019.
- V. Buchstaber and T. Panov, Toric Topology, arXiv:1210.2368v3 [math.AT], 2014.
- R. Da Rosa, D. Jensen, and D. Ranganathan, Toric graph associahedra and compactifications of M_(0,n), arXiv:1411.0537 [math.AG], 2015.
- S. Forcey, M. Ronco, and P. Showers, Polytopes and algebras of grafted trees: Stellohedra, arXiv:1608.08546v2 [math.CO], 2016.
- Stefan Forcey, The Hedra Zoo
- I. Limonchenko, Moment-angle manifolds, 2-truncated cubes and Massey operations, arXiv:1510.07778 [math.AT], 2017.
- M. Lin, Graph Cohomology, 2016, (Fig. 2.5 is a stellahedron).
- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv:1501.07152v3 [math.CO], 2015-2016.
- MathOverflow, Analogue of conic sections for the permutohedra, associahedra, and noncrossing partitions, an MO question posed by T. Copeland, 2017. (See Buchstaber references therein.)
- V. Pilaud, The Associahedron and its Friends, presentation for Séminaire Lotharingien de Combinatoire, April 4-6, 2016. [From _Tom Copeland_, Jun 26 2018]
-
(* t = A046802 *) t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n - 1) - 1; t[n_, k_] = Sum[((i - k + 1)^i*(k - i)^(n - i - 1) - (i - k + 2)^i*(k - i - 1)^(n - i - 1))*Binomial[n - 1, i], {i, 0, k - 1}]; T[n_, j_] := Sum[Binomial[k, j]*t[n + 1, k + 1], {k, j, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2015, after Tom Copeland *)
A343832
a(n) = Sum_{k=0..n} k! * binomial(n,k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 4, 31, 358, 5509, 106096, 2456299, 66471826, 2059640713, 71920704124, 2794938616471, 119653108240414, 5595650767265101, 283841520215780008, 15523069639558351459, 910529206043204428426, 57023540590242398853649, 3797750659849704886903156, 268025698704886063968108943
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n+1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
a := n -> add(k!*binomial(n, k)*binomial(2*n+1, k), k=0..n):
a := n -> n!*add(binomial(2*n+1, k)/(n-k)!, k=0..n):
a := n -> (-1)^n*KummerU(-n, n+2, -1):
a := n -> n!*LaguerreL(n, n+1, -1): # Peter Luschny, May 02 2021
-
a[n_] := Sum[k! * Binomial[n, k] * Binomial[2*n+1, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, May 01 2021 *)
Table[(-1)^n * HypergeometricU[-n, 2 + n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2021 *)
-
a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n+1, k));
-
a(n) = (2*n+1)!*sum(k=0, n, binomial(n, k)/(k+n+1)!);
-
a(n) = n!*sum(k=0, n, binomial(2*n+1, k)/(n-k)!);
-
a(n) = n!*pollaguerre(n, n+1, -1);
-
[factorial(n)*gen_laguerre(n, n+1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A010843
Incomplete Gamma Function at -3.
Original entry on oeis.org
1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
-
a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
-
Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x),n)) /* Michael Somos, Mar 06 2004 */
-
a(n)=local(A,p);if(n<1,n==0,A=matrix(n,n,i,j,1-3*(i==j));sum(i=1,n!,if(p=numtoperm(n,i),prod(j=1,n,A[j,p[j]])))) /* Michael Somos, Mar 06 2004 */
-
@CachedFunction
def A010843(n):
if (n) == 1 : return 1
return (n-1)*A010843(n-1)+(-3)^(n-1)
[A010843(i) for i in (1..22)] # Peter Luschny, Oct 17 2012
A073107
Triangle T(n,k) read by rows, where e.g.f. for T(n,k) is exp((1+y)*x)/(1-x).
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 16, 15, 6, 1, 65, 64, 30, 8, 1, 326, 325, 160, 50, 10, 1, 1957, 1956, 975, 320, 75, 12, 1, 13700, 13699, 6846, 2275, 560, 105, 14, 1, 109601, 109600, 54796, 18256, 4550, 896, 140, 16, 1, 986410, 986409, 493200, 164388, 41076, 8190, 1344, 180, 18, 1
Offset: 0
exp((1 + y)*x)/(1 - x) =
1 +
1/1! * (2 + y) * x +
1/2! * (5 + 4*y + y^2) * x^2 +
1/3! * (16 + 15*y + 6*y^2 + y^3) * x^3 +
1/4! * (65 + 64*y + 30*y^2 + 8*y^3 + y^4) * x^4 +
1/5! * (326 + 325*y + 160*y^2 + 50*y^3 + 10*y^4 + y^5) * x^5 + ...
Triangle starts:
[0] 1;
[1] 2, 1;
[2] 5, 4, 1;
[3] 16, 15, 6, 1;
[4] 65, 64, 30, 8, 1;
[5] 326, 325, 160, 50, 10, 1;
[6] 1957, 1956, 975, 320, 75, 12, 1;
[7] 13700, 13699, 6846, 2275, 560, 105, 14, 1;
-
T := (n, k) -> binomial(n,k)*KummerU(k-n, k-n, 1);
seq(seq(simplify(T(n, k)), k = 0..n), n=0..8); # Peter Luschny, Oct 16 2024
-
perm[m_List] := With[{v=Array[x,Length[m]]},Coefficient[Times@@(m.v),Times@@v]] ;
A[q_] := Array[KroneckerDelta[#1,#2] + 1&,{q,q}] ;
n = 1 ; Print[{1}]; While[n < 10, Print[Abs[CoefficientList[perm[A[n] - IdentityMatrix[n] * k], k]]]; n++] (* John M. Campbell, Jul 02 2012 *)
A073107[n_, k_] := If[n == k, 1, Floor[E*(n - k)!]*Binomial[n, k]];
Table[A073107[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 16 2024 *)
-
def T(n, k):
return sum(binomial(j,k) * factorial(n) // factorial(j) for j in range(n+1))
for n in range(8): print([T(n, k) for k in range(n+1)])
# Peter Luschny, Oct 16 2024
A143409
Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0
The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 | 1
1 | 2, 1
2 | 5, 3, 1
3 | 16, 11, 4, 1
4 | 65, 49, 19, 5, 1
5 | 326, 261, 106, 29, 6, 1
6 | 1957, 1631, 685, 193, 41, 7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
Cf.
A008288,
A076571,
A086764,
A108625,
A143007,
A143410,
A143411,
A143413,
A001517 (main diagonal),
A028387 (row 2),
A000522 (column 0),
A001339 (column 1),
A082030 (column 2),
A095000 (column 3),
A095177 (column 4).
-
T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
# Alternate:
T:= proc(n,k) option remember;
if n = 0 then return 1 fi;
(n+k)*procname(n-1,k) + procname(n-1,k-1);
end proc:
seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
# Or:
A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
-
T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
A144502
Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0
The array, A(n,k), begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
2, 7, 30, 155, 946, 6687, ...
7, 37, 229, 1633, 13219, 119917, ...
37, 266, 2165, 19714, 198773, 2199722, ...
266, 2431, 24576, 272501, 3289726, 42965211, ...
...
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
2, 2, 1;
7, 7, 5, 1;
37, 37, 30, 16, 1;
266, 266, 229, 155, 65, 1;
2431, 2431, 2165, 1633, 946, 326, 1;
27007, 27007, 24576, 19714, 13219, 6687, 1957, 1;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
function A(n,k)
if n eq 0 then return 1;
elif k eq 0 then return A144301(n);
elif k eq 1 then return A144301(n+1);
else return A(n-1,k+1) + k*A(n,k-1);
end if;
end function;
A144502:= func< n,k | A(n-k, k) >;
[A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
-
B:=proc(p,r) option remember;
if p=0 then RETURN(1); fi;
if r=0 then RETURN(B(p-1,1)); fi;
B(p-1,r+1)+r*B(p,r-1); end;
seq(seq(B(d-k, k), k=0..d), d=0..9);
-
t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
-
def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
@CachedFunction
def A(n,k):
if n==0: return 1
elif k==0: return A144301(n)
elif k==1: return A144301(n+1)
else: return A(n-1,k+1) + k*A(n,k-1)
def A144502(n,k): return A(n-k,k)
flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023
A194471
E.g.f. A(x) satisfies A(x) = exp(x) + x*A(x)^2.
Original entry on oeis.org
1, 2, 9, 79, 1065, 19401, 445933, 12389021, 403897553, 15120448273, 639345572181, 30138682861365, 1567316344601593, 89137628104427033, 5503952108613407933, 366697176991277153341, 26220726323043177903009, 2002962250253424509250081
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 79*x^3/3! + 1065*x^4/4! +...
Related expansion:
A(x)^2 = 1 + 4*x + 26*x^2/2! + 266*x^3/3! + 3880*x^4/4! + 74322*x^5/5! +...
Illustrate the recurrence:
a(2) = 1 + 2*(1*1*2 + 1*2*1) = 1 + 2*4 = 9;
a(3) = 1 + 3*(1*1*9 + 2*2*2 + 1*9*1) = 1 + 3*26 = 79;
a(4) = 1 + 4*(1*1*79 + 3*2*9 + 3*9*2 + 1*79*1) = 1 + 4*266 = 1065;
a(5) = 1 + 5*(1*1*1065 + 4*2*79 + 6*9*9 + 4*79*2 + 1*1065*1) = 1 + 5*3880 = 19401.
-
f[0] = 1; f[n_] := f[n] = 1 + n*Sum[ Binomial[n - 1, k]*f[k]*f[n - 1 - k] , {k, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Aug 25 2011 *)
-
a(n):=n!*sum((k+1)^(n-k-1)*binomial(2*k,k)/(n-k)!,k,0,n); /* Vladimir Kruchinin, Sep 01 2014 */
-
{a(n)=n!*polcoeff((1 - sqrt(1 - 4*x*exp(x +O(x^(n+2))))) / (2*x),n)}
-
{a(n)=1+n*sum(k=0,n-1,binomial(n-1,k)*a(k)*a(n-1-k))}
A217284
a(n) = Sum_{k=0..n} (n!/k!)^3.
Original entry on oeis.org
1, 2, 17, 460, 29441, 3680126, 794907217, 272653175432, 139598425821185, 101767252423643866, 101767252423643866001, 135452212975869985647332, 234061424022303335198589697, 514232948577000427431301564310, 1411055210895289172871491492466641, 4762311336771600958441283787074913376
Offset: 0
-
Table[Sum[(n!/k!)^3, {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, (n!/k!)^3); \\ Seiichi Manyama, May 02 2021
A248669
Triangular array of coefficients of polynomials q(n,k) defined in Comments.
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1
The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2 1
5 4 1
16 17 7 1
65 84 45 11 1
326 485 309 100 16 1
-
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
TableForm[Table[q[x, n], {n, 1, 6}]];
TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
c[n_] := c[n] = CoefficientList[q[x, n], x];
TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
A337001
a(n) = n! * Sum_{k=0..n} k^3 / k!.
Original entry on oeis.org
0, 1, 10, 57, 292, 1585, 9726, 68425, 547912, 4931937, 49320370, 542525401, 6510306540, 84633987217, 1184875823782, 17773137360105, 284370197765776, 4834293362023105, 87017280516421722, 1653328329812019577, 33066566596240399540, 694397898521048399601
Offset: 0
-
Table[n! Sum[k^3/k!, {k, 0, n}], {n, 0, 21}]
nmax = 21; CoefficientList[Series[x (1 + 3 x + x^2) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = n (n^2 + a[n - 1]); Table[a[n], {n, 0, 21}]
-
a(n) = n! * sum(k=0, n, k^3/k!); \\ Michel Marcus, Aug 12 2020
Comments