cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 288 results. Next

A248727 A046802(x,y) --> A046802(x,y+1), transform of e.g.f. for the graded number of positroids of the totally nonnegative Grassmannians G+(k,n); enumerates faces of the stellahedra.

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 16, 24, 10, 1, 65, 130, 84, 19, 1, 326, 815, 720, 265, 36, 1, 1957, 5871, 6605, 3425, 803, 69, 1, 13700, 47950, 65646, 44240, 15106, 2394, 134, 1, 109601, 438404, 707840, 589106, 267134, 63896, 7094, 263, 1
Offset: 0

Views

Author

Tom Copeland, Oct 12 2014

Keywords

Comments

This is a transform of A046802 treating it as an array of h-vectors, so y is replaced by (y+1) in the e.g.f. for A046802.
An e.g.f. for the reversed row polynomials with signs is given by exp(a.(0;t)x) = [e^{(1+t)x} [1+t(1-e^(-x))]]^(-1) = 1 - (1+2t)x + (1+5t+5t^2)x^2/2! + ... . The reciprocal is an e.g.f. for the reversed face polynomials of the simplices A074909, i.e., exp(b.(0;t)x) = e^{(1+t)x} [1+t(1-e^(-x))] = 1 + (1+2t)x +(1+3t+3t^2) x^2/2! + ... , so the relations of A133314 apply between the two sets of polynomials. In particular, umbrally [a.(0;t)+b.(0;t)]^n vanishes except for n=0 for which it's unity, implying the two sets of Appell polynomials formed from the two bases, a_n(z;t) = (a.(0;t)+z)^n and b_n(z;t) = (b.(0;t) + z)^n, are an umbral compositional inverse pair, i.e., b_n(a.(x;t);t)= x^n = a_n(b.(x;t);t). Raising operators for these Appell polynomials are related to the polynomials of A028246, whose reverse polynomials are given by A123125 * A007318. Compare: A248727 = A007318 * A123125 * A007318 and A046802 = A007318 * A123125. See A074909 for definitions and related links. - Tom Copeland, Jan 21 2015
The o.g.f. for the umbral inverses is Og(x) = x / (1 - x b.(0;t)) = x / [(1-tx)(1-(1+t)x)] = x + (1+2t) x^2 + (1+3t+3t^2) x^3 + ... . Its compositional inverse is an o.g.f for signed A033282, the reverse f-polynomials for the simplicial duals of the Stasheff polytopes, or associahedra of type A, Oginv(x) =[1+(1+2t)x-sqrt[1+2(1+2t)x+x^2]] / (2t(1+t)x) = x - (1+2t) x^2 + (1+5t+5t^2) x^3 + ... . Contrast this with the o.g.f.s related to the corresponding h-polynomials in A046802. - Tom Copeland, Jan 24 2015
Face vectors, or coefficients of the face polynomials, of the stellahedra, or stellohedra. See p. 59 of Buchstaber and Panov. - Tom Copeland, Nov 08 2016
See A008279 for a relation between the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016

Examples

			The triangle T(n, k) starts:
n\k    0     1     2     3     4    5   6  7 ...
1:     1
2:     2     1
3:     5     5     1
4:    16    24    10     1
5:    65   130    84    19     1
6:   326   815   720   265    36    1
7:  1957  5871  6605  3425   803   69   1
8: 13700 47950 65646 44240 15106 2394 134  1
... reformatted, _Wolfdieter Lang_, Mar 27 2015
		

Crossrefs

Programs

  • Mathematica
    (* t = A046802 *) t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n - 1) - 1; t[n_, k_] = Sum[((i - k + 1)^i*(k - i)^(n - i - 1) - (i - k + 2)^i*(k - i - 1)^(n - i - 1))*Binomial[n - 1, i], {i, 0, k - 1}]; T[n_, j_] := Sum[Binomial[k, j]*t[n + 1, k + 1], {k, j, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2015, after Tom Copeland *)

Formula

Let M(n,k)= sum{i=0,..,k-1, C(n,i)[(i-k)^i*(k-i+1)^(n-i)- (i-k+1)^i*(k-i)^(n-i)]} with M(n,0)=1. Then M(n,k)= A046802(n,k), and T(n,j)= sum(k=j,..,n, C(k,j)*M(n,k)) for j>0 with T(n,0)= 1 + sum(k=1,..,n, M(n,k)) for n>0 and T(0,0)=1.
E.g.f: y * exp[x*(y+1)]/[y+1-exp(x*y)].
Row sums are A007047. Row polynomials evaluated at -1 are unity. Row polynomials evaluated at -2 are A122045.
First column is A000522. Second column appears to be A036918/2 = (A001339-1)/2 = n*A000522(n)/2.
Second diagonal is A052944. (Changed from conjecture to fact on Nov 08 2016.)
The raising operator for the reverse row polynomials with row signs is R = x - (1+t) - t e^(-D) / [1 + t(1-e^(-D))] evaluated at x = 0, with D = d/dx. Also R = x - d/dD log[exp(a.(0;t)D], or R = - d/dz log[e^(-xz) exp(a.(0;t)z)] = - d/dz log[exp(a.(-x;t)z)] with the e.g.f. defined in the comments and z replaced by D. Note that t e ^(-D) / [1+t(1-e^(-D))] = t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... is an e.g.f. for the signed reverse row polynomials of A028246. - Tom Copeland, Jan 23 2015
Equals A007318*(padded A090582)*A007318*A097808 = A007318*(padded (A008292*A007318))*A007318*A097808 = A007318*A130850 = A007318*(mirror of A028246). Padded means in the same way that A097805 is padded A007318. - Tom Copeland, Nov 14 2016
Umbrally, the row polynomials are p_n(x) = (1 + q.(x))^n, where (q.(x))^k = q_k(x) are the row polynomials of A130850. - Tom Copeland, Nov 16 2016
From the previous umbral statement, OP(x,d/dy) y^n = (y + q.(x))^n, where OP(x,y) = exp[y * q.(x)] = x/((1+x)*exp(-x*y) - 1), the e.g.f. of A130850, so OP(x,d/dy) y^n evaluated at y = 1 is p_n(x), the n-th row polynomial of this entry, with offset 0. - Tom Copeland, Jun 25 2018
Consolidating some formulas in this entry and A046082, in umbral notation for concision, with all offsets 0: Let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of this entry (A248727, the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020

Extensions

Title expanded by Tom Copeland, Nov 08 2016

A343832 a(n) = Sum_{k=0..n} k! * binomial(n,k) * binomial(2*n+1,k).

Original entry on oeis.org

1, 4, 31, 358, 5509, 106096, 2456299, 66471826, 2059640713, 71920704124, 2794938616471, 119653108240414, 5595650767265101, 283841520215780008, 15523069639558351459, 910529206043204428426, 57023540590242398853649, 3797750659849704886903156, 268025698704886063968108943
Offset: 0

Views

Author

Seiichi Manyama, May 01 2021

Keywords

Comments

Let A(x) be the e.g.f. of this sequence, and B(x) be the e.g.f. of A082545, then A(x)/B(x) = C(x) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108). This follows from the fact that this sequence and A082545 form adjacent semi-diagonals of table A088699. - Paul D. Hanna, Aug 16 2022

Crossrefs

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, n+1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    a := n -> add(k!*binomial(n, k)*binomial(2*n+1, k), k=0..n):
    a := n -> n!*add(binomial(2*n+1, k)/(n-k)!, k=0..n):
    a := n -> (-1)^n*KummerU(-n, n+2, -1):
    a := n -> n!*LaguerreL(n, n+1, -1): # Peter Luschny, May 02 2021
  • Mathematica
    a[n_] := Sum[k! * Binomial[n, k] * Binomial[2*n+1, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, May 01 2021 *)
    Table[(-1)^n * HypergeometricU[-n, 2 + n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2021 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n+1, k));
    
  • PARI
    a(n) = (2*n+1)!*sum(k=0, n, binomial(n, k)/(k+n+1)!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(2*n+1, k)/(n-k)!);
    
  • PARI
    a(n) = n!*pollaguerre(n, n+1, -1);
    
  • SageMath
    [factorial(n)*gen_laguerre(n, n+1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022

Formula

a(n) = (2*n+1)! * Sum_{k=0..n} binomial(n,k)/(k+n+1)!.
a(n) = n! * Sum_{k=0..n} binomial(2*n+1,k)/(n-k)!.
a(n) = n! * LaguerreL(n, n+1, -1).
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n+2).
a(n) == 1 (mod 3).
a(n) ~ 2^(2*n + 3/2) * n^n / exp(n-1). - Vaclav Kotesovec, May 02 2021
From Paul D. Hanna, Aug 16 2022: (Start)
E.g.f.: exp( (1-2*x - sqrt(1-4*x))/(2*x) ) * (1 - sqrt(1-4*x)) / (2*x*sqrt(1-4*x)), derived from the e.g.f for A082545 given by Mark van Hoeij.
E.g.f.: exp(C(x) - 1) * C(x) / sqrt(1-4*x), where C(x) = (1 - sqrt(1-4*x))/(2*x) is the Catalan function (A000108). (End)

A010843 Incomplete Gamma Function at -3.

Original entry on oeis.org

1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Programs

  • Maple
    a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
  • Mathematica
    Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x),n)) /*  Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A,p);if(n<1,n==0,A=matrix(n,n,i,j,1-3*(i==j));sum(i=1,n!,if(p=numtoperm(n,i),prod(j=1,n,A[j,p[j]])))) /* Michael Somos, Mar 06 2004 */
    
  • Sage
    @CachedFunction
    def A010843(n):
        if (n) == 1 : return 1
        return (n-1)*A010843(n-1)+(-3)^(n-1)
    [A010843(i) for i in (1..22)]    # Peter Luschny, Oct 17 2012

Formula

E.g.f.: exp(-3x)/(1-x). - Michael Somos, Mar 06 2004
a(0) = 1 and for n>0, a(n) is the permanent of the n X n matrix with -2's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*(-2)^k ). a(n) = Sum(k=0..n, A008279(n, k)*(-3)^(n-k) ). - Philippe Deléham, Dec 15 2003
G.f.: hypergeom([1,1],[],x/(1+3*x))/(1+3*x). - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 13 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) ~ n! * exp(-3). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-3)^(n-1)*hypergeom([1, 1-n], [], 1/3). - Vladimir Reshetnikov, Oct 18 2015
a(n) = KummerU(-n, -n, -3). - Peter Luschny, May 10 2022

A073107 Triangle T(n,k) read by rows, where e.g.f. for T(n,k) is exp((1+y)*x)/(1-x).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 15, 6, 1, 65, 64, 30, 8, 1, 326, 325, 160, 50, 10, 1, 1957, 1956, 975, 320, 75, 12, 1, 13700, 13699, 6846, 2275, 560, 105, 14, 1, 109601, 109600, 54796, 18256, 4550, 896, 140, 16, 1, 986410, 986409, 493200, 164388, 41076, 8190, 1344, 180, 18, 1
Offset: 0

Views

Author

Vladeta Jovovic, Aug 19 2002

Keywords

Comments

Triangle is second binomial transform of A008290. - Paul Barry, May 25 2006
Ignoring signs, n-th row is the coefficient list of the permanental polynomial of the n X n matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 02 2012

Examples

			exp((1 + y)*x)/(1 - x) =
  1 +
  1/1! * (2 + y) * x +
  1/2! * (5 + 4*y + y^2) * x^2 +
  1/3! * (16 + 15*y + 6*y^2 + y^3) * x^3 +
  1/4! * (65 + 64*y + 30*y^2 + 8*y^3 + y^4) * x^4 +
  1/5! * (326 + 325*y + 160*y^2 + 50*y^3 + 10*y^4 + y^5) * x^5 + ...
Triangle starts:
  [0]     1;
  [1]     2,     1;
  [2]     5,     4,    1;
  [3]    16,    15,    6,    1;
  [4]    65,    64,   30,    8,   1;
  [5]   326,   325,  160,   50,  10,   1;
  [6]  1957,  1956,  975,  320,  75,  12,  1;
  [7] 13700, 13699, 6846, 2275, 560, 105, 14, 1;
		

Crossrefs

Cf. A008290, A008291, A046802, A093375 (unsigned inverse), A094587, A010842 (row sums), A000142 (alternating row sums), A367963 (central terms).
Column k=0..4 give A000522, A007526, A038155, A357479, A357480.

Programs

  • Maple
    T := (n, k) -> binomial(n,k)*KummerU(k-n, k-n, 1);
    seq(seq(simplify(T(n, k)), k = 0..n), n=0..8);  # Peter Luschny, Oct 16 2024
  • Mathematica
    perm[m_List] := With[{v=Array[x,Length[m]]},Coefficient[Times@@(m.v),Times@@v]] ;
    A[q_] := Array[KroneckerDelta[#1,#2] + 1&,{q,q}] ;
    n = 1 ; Print[{1}]; While[n < 10, Print[Abs[CoefficientList[perm[A[n] - IdentityMatrix[n] * k], k]]]; n++] (* John M. Campbell, Jul 02 2012 *)
    A073107[n_, k_] := If[n == k, 1, Floor[E*(n - k)!]*Binomial[n, k]];
    Table[A073107[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 16 2024 *)
  • SageMath
    def T(n, k):
        return sum(binomial(j,k) * factorial(n) // factorial(j) for j in range(n+1))
    for n in range(8): print([T(n, k) for k in range(n+1)])
    # Peter Luschny, Oct 16 2024

Formula

O.g.f. for k-th column is (1/k!)*Sum_{i >= k} i!*x^i/(1-x)^(i+1).
For n > 0, T(n, 0) = floor(n!*exp(1)) = A000522(n), T(n, 1) = floor(n!*exp(1) - 1) = A007526(n), T(n, 2) = 1/2!*floor(n!*exp(1) - 1 - n) = A038155(n), T(n, 3) = 1/3!*floor(n!*exp(1) - 1 - n - n*(n - 1)), T(n, 4) = 1/4!*floor(n!*exp(1) - 1 - n - n*(n - 1) - n*(n - 1)*(n - 2)), ... .
Row sums give A010842.
E.g.f. for k-th column is (x^k/k!)*exp(x)/(1 - x).
O.g.f. for k-th row is n!*Sum_{k = 0..n} (1 + x)^k/k!.
T(n,k) = Sum_{j = 0..n} binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
-exp(-x) * Sum_{k=0..n} T(n,k)*x^k = Integral (x+1)^n*exp(-x) dx = -exp(1)*Gamma(n+1,x+1). - Gerald McGarvey, Mar 15 2009
From Peter Bala, Sep 20 2012: (Start)
Exponential Riordan array [exp(x)/(1-x),x] belonging to the Appell subgroup, which factorizes in the Appell group as [1/1-x,x]*[exp(x),x] = A094587*A007318.
The n-th row polynomial R(n,x) of the triangle satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x + y) = Sum {k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of triangle is a signed version of A093375. (End)
From Tom Copeland, Oct 20 2015: (Start)
The raising operator, with D = d/dx, for the row polynomials is RP = x + d{log[e^D/(1-D)]}/dD = x + 1 + 1/(1-D) = x + 2 + D + D^2 + ..., i.e., RP R(n,x) = R(n+1,x).
This operator is the limit as t tends to 1 of the raising operator of the polynomials p(n,x;t) described in A046802, implying R(n,x) = p(n,x;1). Compare with the raising operator of A094587, x + 1/(1-D), and that of signed A093375, x - 1 - 1/(1-D).
From the Appell formalism, the row polynomials RI(n,x) of signed A093375 are the umbral inverse of this entry's row polynomials; that is, R(n,RI(.,x)) = x^n = RI(n,R(.,x)) under umbral composition. (End)
From Werner Schulte, Sep 07 2020: (Start)
T(n,k) = (n! / k!) * (Sum_{i=k..n} 1 / (n-i)!) for 0 <= k <= n.
T(n,k) = n * T(n-1,k) + binomial(n,k) for 0 <= k <= n with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or j > i.
T(n,k) = A000522(n-k) * binomial(n,k) for 0 <= k <= n. (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2004

A143409 Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The Euler-Seidel matrix for the sequence {k!} is array A076571 read as a square, whose k-th column entries have a common factor of k!. Removing these common factors gives the current table.
This table is closely connected to the constant 1/e. The row, column and diagonal entries of this table occur in series acceleration formulas for 1/e.
For a similar table based on the differences of the sequence {k!} and related to the constant e, see A086764. For other arrays similarly related to constants see A143410 (for sqrt(e)), A143411 (for 1/sqrt(e)), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 |     1
1 |     2,     1
2 |     5,     3,    1
3 |    16,    11,    4,    1
4 |    65,    49,   19,    5,   1
5 |   326,   261,  106,   29,   6,  1
6 |  1957,  1631,  685,  193,  41,  7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
		

Crossrefs

Cf. A008288, A076571, A086764, A108625, A143007, A143410, A143411, A143413, A001517 (main diagonal), A028387 (row 2), A000522 (column 0), A001339 (column 1), A082030 (column 2), A095000 (column 3), A095177 (column 4).

Programs

  • Maple
    T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
    for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
    # Alternate:
    T:= proc(n,k) option remember;
      if n = 0 then return 1 fi;
      (n+k)*procname(n-1,k) + procname(n-1,k-1);
    end proc:
    seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
    # Or:
    A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
    seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
  • Mathematica
    T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} binomial(n,j)*(k+j)!.
T(n,k) = ((n+k)!/k!)*Num_Pade(n,k), where Num_Pade(n,k) denotes the numerator of the Padé approximation for the function exp(x) of degree (n,k) evaluated at x = 1.
Recurrence relations:
T(n,k) = T(n-1,k) + (k+1)*T(n-1,k+1);
T(n,k) = (n+k)*T(n-1,k) + T(n-1,k-1).
E.g.f. for column k: exp(y)/(1-y)^(k+1).
E.g.f. for array: exp(y)/(1-x-y) = (1 + x + x^2 + ...) + (2 + 3*x + 4*x^2 + ...)*y + (5 + 11*x + 19*x^2 + ...)*y^2/2! + ... .
Row n lists the values of the Poisson-Charlier polynomial x^(n) + C(n,1)*x^(n-1) + C(n,2)*x^(n-2) + ... + C(n,n) for x = 1,2,3,..., where x^(m) denotes the rising factorial x*(x+1)*...*(x+m-1).
Main diagonal is A001517.
Series formulas for 1/e:
Row n: 1/e = n!*[1/T(n,0) - 1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) - 1/(3!*T(n,2)*T(n,3)) + ...].
Column k: k!/e = A000166(k) + (-1)^(k+1)*[0!/(T(0,k)*T(1,k)) + 1!/(T(1,k)*T(2,k)) + 2!/(T(2,k)*T(3,k)) + ...].
Main diagonal: 1/e = 1 - 2*Sum_{n>=0} (-1)^n/(T(n,n)*T(n+1,n+1)) = 1 - 2*[1/(1*3) - 1/(3*19) + 1/(19*193) - ...].
Second subdiagonal: 1/e = 2*(1^2/(1*5) - 2^2/(5*49) + 3^2/(49*685) - ...).
Compare with A143413.
From Peter Luschny, Oct 05 2017: (Start)
T(n, k) = hypergeom([k+1, k-n], [], -1).
When seen as a triangular array then the row sums are A273596 and the alternating row sums are A003470. (End)

A144502 Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Examples

			The array, A(n,k), begins:
    1,    1,     1,      1,       1,        1, ...
    1,    2,     5,     16,      65,      326, ...
    2,    7,    30,    155,     946,     6687, ...
    7,   37,   229,   1633,   13219,   119917, ...
   37,  266,  2165,  19714,  198773,  2199722, ...
  266, 2431, 24576, 272501, 3289726, 42965211, ...
  ...
Antidiagonal triangle, T(n,k), begins as:
      1;
      1,     1;
      2,     2,     1;
      7,     7,     5,     1;
     37,    37,    30,    16,     1;
    266,   266,   229,   155,    65,    1;
   2431,  2431,  2165,  1633,   946,  326,    1;
  27007, 27007, 24576, 19714, 13219, 6687, 1957,   1;
		

Crossrefs

Rows include A000522, A144495, A144496, A144497.
Columns include A144301, A001515, A144498, A144499, A144500.
Main diagonal is A144501.
Antidiagonal sums give A144503.

Programs

  • Magma
    A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
    function A(n,k)
      if n eq 0 then return 1;
      elif k eq 0 then return A144301(n);
      elif k eq 1 then return A144301(n+1);
      else return A(n-1,k+1) + k*A(n,k-1);
      end if;
    end function;
    A144502:= func< n,k | A(n-k, k) >;
    [A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    B:=proc(p,r) option remember;
    if p=0 then RETURN(1); fi;
    if r=0 then RETURN(B(p-1,1)); fi;
    B(p-1,r+1)+r*B(p,r-1); end;
    seq(seq(B(d-k, k), k=0..d), d=0..9);
  • Mathematica
    t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
    t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
    Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
  • SageMath
    def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        elif k==0: return A144301(n)
        elif k==1: return A144301(n+1)
        else: return A(n-1,k+1) + k*A(n,k-1)
    def A144502(n,k): return A(n-k,k)
    flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

Let A_n(x) be the e.g.f. for row n. Then A_0(x) = exp(x) and for n >= 1, A_n(x) = (d/dx)A_{n-1}(x)/(1-x).
For n >= 1, the rows A_{n}(x) = P_{n}(x)*exp(x)/(1-x)^(2*n), where P_{n}(x) = (1-x)*(d/dx)( P_{n-1}(x) ) + (2*n-x)*P_{n-1}(x) and P_{0}(x) = 1. - G. C. Greubel, Oct 08 2023

Extensions

6 more terms from Michel Marcus, Feb 01 2023

A194471 E.g.f. A(x) satisfies A(x) = exp(x) + x*A(x)^2.

Original entry on oeis.org

1, 2, 9, 79, 1065, 19401, 445933, 12389021, 403897553, 15120448273, 639345572181, 30138682861365, 1567316344601593, 89137628104427033, 5503952108613407933, 366697176991277153341, 26220726323043177903009, 2002962250253424509250081
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2011

Keywords

Comments

The radius of convergence r of the e.g.f. satisfies: r = exp(-r)/4 = limit (n+1)*a(n)/a(n+1) = 0.203888354702240... with A(r) = 1/(2*r) = 2.452322501352287...

Examples

			E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 79*x^3/3! + 1065*x^4/4! +...
Related expansion:
A(x)^2 = 1 + 4*x + 26*x^2/2! + 266*x^3/3! + 3880*x^4/4! + 74322*x^5/5! +...
Illustrate the recurrence:
a(2) = 1 + 2*(1*1*2 + 1*2*1) = 1 + 2*4 = 9;
a(3) = 1 + 3*(1*1*9 + 2*2*2 + 1*9*1) = 1 + 3*26 = 79;
a(4) = 1 + 4*(1*1*79 + 3*2*9 + 3*9*2 + 1*79*1) = 1 + 4*266 = 1065;
a(5) = 1 + 5*(1*1*1065 + 4*2*79 + 6*9*9 + 4*79*2 + 1*1065*1) = 1 + 5*3880 = 19401.
		

Crossrefs

Programs

  • Mathematica
    f[0] = 1; f[n_] := f[n] = 1 + n*Sum[ Binomial[n - 1, k]*f[k]*f[n - 1 - k] , {k, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Aug 25 2011 *)
  • Maxima
    a(n):=n!*sum((k+1)^(n-k-1)*binomial(2*k,k)/(n-k)!,k,0,n); /* Vladimir Kruchinin, Sep 01 2014 */
  • PARI
    {a(n)=n!*polcoeff((1 - sqrt(1 - 4*x*exp(x +O(x^(n+2))))) / (2*x),n)}
    
  • PARI
    {a(n)=1+n*sum(k=0,n-1,binomial(n-1,k)*a(k)*a(n-1-k))}
    

Formula

E.g.f.: A(x) = (1 - sqrt(1 - 4*x*exp(x))) / (2*x).
a(n) = 1 + n*Sum_{k=0..n-1} C(n-1,k)*a(k)*a(n-1-k) for n>=0.
a(n) ~ sqrt(2)*sqrt(1+LambertW(1/4))*n^(n-1)/(4*exp(n)*LambertW(1/4)^(n+1)). - Vaclav Kotesovec, Aug 19 2013
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(2*k,k)/(n-k)!. - Vladimir Kruchinin, Sep 01 2014

A217284 a(n) = Sum_{k=0..n} (n!/k!)^3.

Original entry on oeis.org

1, 2, 17, 460, 29441, 3680126, 794907217, 272653175432, 139598425821185, 101767252423643866, 101767252423643866001, 135452212975869985647332, 234061424022303335198589697, 514232948577000427431301564310, 1411055210895289172871491492466641, 4762311336771600958441283787074913376
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n!/k!)^3, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (n!/k!)^3); \\ Seiichi Manyama, May 02 2021

Formula

Recurrence: a(n) = (n+1)*(n^2-n+1)*a(n-1)-(n-1)^3*a(n-2).
a(n) ~ 2.12970254898330641813452361... * (n!)^3 = A271574 * (n!)^3.
a(n) = n^3 * a(n-1) + 1. - Seiichi Manyama, May 02 2021

A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0. The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2. Column 2 of A248669 is given by A093344(n) for n >= 1.

Examples

			The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2     1
5     4     1
16    17    7    1
65    84    45   11    1
326   485  309   100   16   1
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
    q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[q[x, n], {n, 1, 6}]];
    TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
    c[n_] := c[n] = CoefficientList[q[x, n], x];
    TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
    Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)

Formula

q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.

A337001 a(n) = n! * Sum_{k=0..n} k^3 / k!.

Original entry on oeis.org

0, 1, 10, 57, 292, 1585, 9726, 68425, 547912, 4931937, 49320370, 542525401, 6510306540, 84633987217, 1184875823782, 17773137360105, 284370197765776, 4834293362023105, 87017280516421722, 1653328329812019577, 33066566596240399540, 694397898521048399601
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Comments

Exponential convolution of cubes (A000578) and factorial numbers (A000142).

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[k^3/k!, {k, 0, n}], {n, 0, 21}]
    nmax = 21; CoefficientList[Series[x (1 + 3 x + x^2) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = n (n^2 + a[n - 1]); Table[a[n], {n, 0, 21}]
  • PARI
    a(n) = n! * sum(k=0, n, k^3/k!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: x * (1 + 3*x + x^2) * exp(x) / (1 - x).
a(0) = 0; a(n) = n * (n^2 + a(n-1)).
a(n) ~ 5*exp(1)*n!. - Vaclav Kotesovec, Jan 13 2024
Previous Showing 71-80 of 288 results. Next