cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 123 results. Next

A101104 a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.

Original entry on oeis.org

1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original name: The first summation of row 4 of Euler's triangle - a row that will recursively accumulate to the power of 4.

Crossrefs

For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
z = 0 | A000007 | A019590 | .......MagicNKZ(n,k,0) = A008292(n,k+1) .......
z = 1 | A000012 | A040000 | A101101 | thisSeq | A101100 | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | A101095 | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181
Cf. A101095 for an expanded table and more about MagicNKZ.

Programs

  • Mathematica
    MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
    Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)

Formula

a(k) = MagicNKZ(4,k,1) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n (cf. A101095). That is, a(k) = Sum_{j=0..k+1} (-1)^j*binomial(4, j)*(k-j+1)^4.
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4. - Joerg Arndt, Nov 30 2014
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x). - Colin Barker, Apr 16 2012

Extensions

New name from Joerg Arndt, Nov 30 2014
Original Formula edited and Crossrefs table added by Danny Rorabaugh, Apr 22 2015

A101289 Inverse Moebius transform of 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 22, 63, 127, 280, 463, 855, 1309, 2135, 3004, 4704, 6189, 9037, 11776, 16359, 20350, 27901, 33650, 44695, 53614, 68790, 80731, 103776, 118882, 148701, 171220, 210469, 237337, 292292, 324633, 393351, 438922, 522298, 576346, 690333, 749399
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Comments

From Georg Fischer, Aug 06 2025: (Start)
The general pattern is a(n) = Sum_{d|n} (Product_{k=0..m-1} d+k)/m! = Sum_{d|n} binomial(d+m-1, m) = Sum{d|n} Axxxxxx(d), with:
m Axxxxxx resulting sequence
------------------------------
5 A000389 A101289 (this sequence)
The other formulas generalize correspondingly.
A116989 uses A000579 and m=6 within a modified formula.
(End)

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 5)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n));  (sigma(f, 5) + 10*sigma(f, 4) + 35*sigma(f, 3) + 50*sigma(f, 2) + 24*sigma(f))/120; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = Sum_{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)/120 = Sum_{d|n} C(d+4,5) = Sum{d|n} A000389(d) = Sum_{d|n} (d^5+10*d^4+35*d^3+50*d^2+24*d)/120.
G.f.: Sum_{k>=1} x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k). - Seiichi Manyama, Apr 19 2021
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 10*sigma_4(n) + 35*sigma_3(n) + 50*sigma_2(n) + 24*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 10*zeta(s-4) + 35*zeta(s-3) + 50*zeta(s-2) + 24*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A097297 Seventh column (m=6) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 37, 133, 364, 840, 1722, 3234, 5676, 9438, 15015, 23023, 34216, 49504, 69972, 96900, 131784, 176358, 232617, 302841, 389620, 495880, 624910, 780390, 966420, 1187550, 1448811, 1755747, 2114448, 2531584, 3014440, 3570952, 4209744
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+6, 6) = 6*b(n) - 5*b(n-1) = (n+36)*binomial(n+5, 5)/6, with b(n) = A000579(n+6) = binomial(n+6, 6).
G.f.: (6-5*x)/(1-x)^7.

A000910 a(n) = 5*binomial(n, 6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5, 35, 140, 420, 1050, 2310, 4620, 8580, 15015, 25025, 40040, 61880, 92820, 135660, 193800, 271320, 373065, 504735, 672980, 885500, 1151150, 1480050, 1883700, 2375100, 2968875, 3681405, 4530960, 5537840, 6724520, 8115800, 9738960, 11623920, 13803405
Offset: 0

Views

Author

Keywords

References

  • Charles Jordan, Calculus of Finite Differences, Budapest, 1939, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A088617.

Programs

Formula

a(n) = 5*A000579(n+3) = A080159(n+3, 3).
G.f.: 5*x^6/(1-x)^7. - Colin Barker, Mar 01 2012
E.g.f.: x^6*exp(x)/144. - G. C. Greubel, May 22 2022
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=6} 1/a(n) = 6/25.
Sum_{n>=6} (-1)^n/a(n) = 192*log(2)/5 - 661/25. (End)

A039948 A triangle related to A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
    1;
    1,   1;
    4,   2,   1;
   18,  12,   3,  1;
  120,  72,  24,  4, 1;
  960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
		

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
  • SageMath
    def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
    flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022

Formula

T(n, m) = n!*Fibonacci(n-m+1)/m!, n >= m >= 0.
T(n, 0) = A005442(n).
T(n, 1) = A005443(n).
E.g.f. for column m: x^m/(m!*(1-x-x^2)), m >= 0.
From G. C. Greubel, Nov 20 2022: (Start)
T(n, n-1) = A000027(n).
T(n, n-2) = 4*A000217(n-1), n >= 2.
T(n, n-3) = 18*A000292(n-2), n >= 3.
T(n, n-4) = 5! * A000332(n), n >= 4.
T(n, n-5) = 8 * 5! * A000389(n), n >= 5.
T(n, n-6) = 13 * 6! * A000579(n), n >= 6.
T(n, n-7) = 21 * 7! * A000580(n), n >= 7.
T(n, n-8) = 34 * 8! * A000581(n), n >= 8.
T(n, n-9) = 55 * 9! * A000582(n), n >= 9.
T(n, n-10) = 89 * 10! * A001287(n), n >= 10.
T(n, n-11) = 12 * 12! * A001288(n), n >= 11.
T(n, n-12) = 233 * 12! * A010965(n), n >= 12.
T(n, n-13) = 89 * 13! * A010966(n), n >= 13.
Sum_{k=0..n} T(n, k) = A110313(n). (End)

A053135 Binomial coefficients C(2*n+6,6).

Original entry on oeis.org

1, 28, 210, 924, 3003, 8008, 18564, 38760, 74613, 134596, 230230, 376740, 593775, 906192, 1344904, 1947792, 2760681, 3838380, 5245786, 7059052, 9366819, 12271512, 15890700, 20358520, 25827165, 32468436, 40475358, 50063860, 61474519, 74974368, 90858768
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of seventh column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^6). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Magma
    [Binomial(2*n+6, 6): n in [0..30]]; // G. C. Greubel, Sep 03 2018
  • Maple
    seq(binomial(2*n+6,6),n=0..40); # Nathaniel Johnston, May 14 2011
  • Mathematica
    Table[Binomial[2*n+6, 6], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    vector(30,n,n--; binomial(2*n+6, 6)) \\ G. C. Greubel, Sep 03 2018
    

Formula

G.f.: (1 + 21*x + 35*x^2 + 7*x^3)/(1-x)^7.
a(n) = binomial(2*n+6, 6) = A000579(2*n+6).
a(n) = A000384(n+1)*A000384(n+2)*A000384(n+3)/90. - Bruno Berselli, Nov 12 2014
E.g.f.: (90 + 2430*x + 6975*x^2 + 5655*x^3 + 1710*x^4 + 204*x^5 + 8*x^6)* exp(x)/90. - G. C. Greubel, Sep 03 2018
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 96*log(2) - 131/2.
Sum_{n>=0} (-1)^n/a(n) = 23/2 - 6*Pi + 12*log(2). (End)

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A140406 a(n) = binomial(n+6, 6)*8^n.

Original entry on oeis.org

1, 56, 1792, 43008, 860160, 15138816, 242221056, 3598712832, 50381979648, 671759728640, 8598524526592, 106309030510592, 1275708366127104, 14915974742409216, 170468282770391040, 1909244767028379648, 21001692437312176128, 227312435792084729856
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations (n >= 6) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's.
If n=6 then a(0)=1.
Example: a(1)=56 because we have
uuuuuup, uuuuupu, uuuupuu, uuupuuu, uupuuuu, upuuuuu, puuuuuu,
uuuuuur, uuuuuru, uuuuruu, uuuruuu, uuruuuu, uruuuuu, ruuuuuu,
uuuuuus, uuuuusu, uuuusuu, uuusuuu, uusuuuu, usuuuuu, suuuuuu,
uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu,
uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu,
uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu,
uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu,
uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+6, 6): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(binomial(n+6,6)*8^n,n=0..17);
  • Mathematica
    Table[Binomial[n+6,6]8^n,{n,0,20}] (* or *) LinearRecurrence[ {56,-1344,17920,-143360,688128,-1835008,2097152},{1,56,1792,43008,860160,15138816,242221056},20] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    a(n)=binomial(n+6,6)<<(3*n) \\ Charles R Greathouse IV, Dec 15 2011

Formula

G.f.: 1/(1-8*x)^7. - Zerinvary Lajos, Aug 06 2008
a(n) = 56*a(n-1) - 1344*a(n-2) + 17920*a(n-3) - 143360*a(n-4) + 688128*a(n-5) - 1835008*a(n-6) + 2097152*a(n-7). - Harvey P. Dale, Dec 15 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 538628/5 - 806736*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 2834352*log(9/8) - 1669188/5. (End)

A253946 a(n) = 6*binomial(n+1, 6).

Original entry on oeis.org

6, 42, 168, 504, 1260, 2772, 5544, 10296, 18018, 30030, 48048, 74256, 111384, 162792, 232560, 325584, 447678, 605682, 807576, 1062600, 1381380, 1776060, 2260440, 2850120, 3562650, 4417686, 5437152, 6645408, 8069424, 9738960, 11686752, 13948704, 16564086
Offset: 5

Views

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1, 2, ..., n}, a(n) is the sum of the 3 smallest elements of each subset with 5 elements, which is 6*C(n+1, 6) (for n >= 5), hence a(n) = 6*C(n+1, 6) = 6 * A000579(n+1).

Examples

			For A = {1, 2, 3, 4, 5, 6} the subsets with 5 elements are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.
The sum of 3 smallest elements of each subset: a(6) = (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 4) + (1 + 3 + 4) + (2 + 3 + 4) = 42 = 6*C(6 + 1, 6) = 6*A000579(6+1).
		

Crossrefs

Cf. A000579.
Sixth column of A003506.

Programs

  • Magma
    [6*Binomial(n+1, 6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015
    
  • Maple
    A253946:=n->6*binomial(n+1,6): seq(A253946(n), n=5..50); # Wesley Ivan Hurt, Feb 13 2015
  • Mathematica
    Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {5}]] & /@
      Range@ 30, 4] (* Michael De Vlieger, Jan 20 2015 *)
    6Binomial[Range[6, 29], 6] (* Alonso del Arte, Feb 05 2015 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{6,42,168,504,1260,2772,5544},40] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    Vec(6*x^5/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 03 2015

Formula

a(n) = 6*C(n+1,6) = 6*A000579(n+1).
G.f.: 6*x^5 / (1-x)^7. - Colin Barker, Apr 03 2015
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32*log(2) - 661/30. (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A306477 Number of ways to write n as C(w+2,2) + C(x+3,4) + C(y+5,6) + C(z+7,8) with w,x,y,z nonnegative integers, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).

Original entry on oeis.org

1, 3, 4, 4, 3, 3, 5, 6, 5, 5, 8, 8, 6, 4, 6, 10, 10, 8, 6, 6, 6, 10, 9, 6, 6, 7, 7, 6, 8, 10, 10, 7, 4, 7, 7, 9, 13, 12, 9, 6, 5, 6, 11, 12, 12, 13, 10, 9, 8, 9, 11, 15, 12, 8, 8, 10, 14, 11, 7, 8, 12, 9, 8, 9, 10, 11, 13, 8, 5, 9, 10, 13, 14, 12, 8, 7, 6, 12, 14, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 18 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer n can be written as C(w,2) + C(x,4) + C(y,6) + C(z,8), where w,x,y,z are integers greater than one.
I'd like to call this conjecture "the 2-4-6-8 conjecture". I have verified it for all n = 1..3*10^7.
On Feb. 20, 2019, Yaakov Baruch reported on Mathoverflow that he had verified the 2-4-6-8 conjecture for n up to 5*10^8. - Zhi-Wei Sun, Feb 20 2019
On Feb. 24, 2019, Max A. Alekseyev reported on Mathoverflow that he had verified the 2-4-6-8 conjecture for n up to 2*10^11.
I'd like to offer 2468 US dollars as the prize for the first correct proof of my 2-4-6-8 conjecture, or 2468 RMB as the prize for the first explicit counterexample. - Zhi-Wei Sun, Feb 24 2019
Yaakov Baruch reported on March 12, 2019 that he had checked the 2-4-6-8 conjecture for all n = 1..2*10^12 with no counterexample found. - Zhi-Wei Sun, Mar 12 2019

Examples

			a(1) = 1 with 1 = C(2,2) + C(3,4) + C(5,6) + C(7,8).
a(4655) = 2 with 4655 = C(85,2) + C(14,4) + C(9,6) + C(7,8) = C(94,2) + C(7,4) + C(9,6) + C(11,8).
a(9590) = 2 with 9590 = C(35,2) + C(21,4) + C(7,6) + C(14,8) = C(136,2) + C(7,4) + C(10,6) + C(11,8).
a(24935) = 2 with 24935 = C(49,2) + C(29,4) + C(7,6) + C(8,8) = C(140,2) + C(26,4) + C(10,6) + C(10,8).
a(33845) = 2 with 33845 = C(104,2) + C(8,4) + C(19,6) + C(13,8) = C(148,2) + C(26,4) + C(16,6) + C(9,8).
a(192080) = 2 with 192080 = C(7,2) + C(26,4) + C(25,6) + C(9,8) = C(414,2) + C(39,4) + C(8,6) + C(17,8).
a(23343989) = 1 with 23343989 = C(365,2) + C(76,4) + C(40,6) + C(34,8).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m]; TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[f[8,z]>=n,Goto[cc]];Do[If[f[6,y]>=n-f[8,z],Goto[bb]];Do[If[f[4,x]>=n-f[8,z]-f[6,y],Goto[aa]];If[TQ[n-f[8,z]-f[6,y]-f[4,x]],r=r+1],{x,0,n-1-f[8,z]-f[6,y]}];Label[aa],{y,0,n-1-f[8,z]}];Label[bb],{z,0,n-1}];Label[cc];tab=Append[tab,r],{n,1,80}];Print[tab]
Previous Showing 51-60 of 123 results. Next