cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 74 results. Next

A370167 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with k = 0..binomial(n,2) edges.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 0, 1, 4, 5, 5, 4, 2, 1, 1, 0, 0, 0, 1, 3, 9, 15, 20, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 1, 6, 20, 41, 73, 110, 133, 139, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 1, 3, 15, 50, 124, 271, 515, 832, 1181, 1460, 1581, 1516, 1291, 970, 658, 400, 220, 114, 56, 24, 11, 5, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2024

Keywords

Examples

			Triangle begins:
  1
  0
  0  1
  0  0  1  1
  0  0  1  2  2  1  1
  0  0  0  1  4  5  5  4  2  1  1
  0  0  0  1  3  9 15 20 22 20 14  9  5  2  1  1
		

Crossrefs

Column sums are A000664.
Row sums are A002494.
This is the covering case of A008406, labeled A084546.
The labeled version is A054548, row sums A006129, column sums A121251.
The connected case is A054924, row sums A001349, column sums A002905.
The labeled connected case is A062734, with loops A369195.
The connected case with loops is A283755, row sums A054921.
The labeled version w/ loops is A369199, row sums A322661, col sums A173219.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]]], {n,0,5},{k,0,Binomial[n,2]}]
  • PARI
    \\ G(n) defined in A008406.
    row(n)={Vecrev(G(n)-if(n>0, G(n-1)), binomial(n,2)+1)}
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024

Extensions

a(42) onwards from Andrew Howroyd, Feb 19 2024

A000676 Number of centered trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 7, 12, 27, 55, 127, 284, 682, 1618, 3979, 9823, 24722, 62651, 160744, 415146, 1081107, 2831730, 7462542, 19764010, 52599053, 140580206, 377244482, 1016022191, 2745783463, 7443742141, 20239038700, 55178647926, 150820588425, 413226000775
Offset: 0

Views

Author

Keywords

Comments

A tree has either a center or a bicenter and either a centroid or a bicentroid. (These terms were introduced by Jordan.)
If the number of edges in a longest path in the tree is 2m, then the middle node in the path is the unique center, otherwise the two middle nodes in the path are the unique bicenters.
On the bottom of first page 266 of article Cayley (1881) is a table of A000676 and A000677 for n = 1..13. - Michael Somos, Aug 20 2018

Examples

			G.f. = 1 + x + x^3 + x^4 + 2*x^5 + 3*x^6 + 7*x^7 + 12*x^8 + 27*x^9 + 55*x^10 + ... - _Michael Somos_, Aug 20 2018
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 35, 36.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A102911 (trees with a bicentroid), A027416 (trees with a centroid), A000677 (trees with a bicenter), A000055 (trees), A000081 (rooted trees).

Programs

  • Mathematica
    (* See link. *)

Formula

a(n) + A000677(n) = A000055(n).

A275421 Triangle read by rows: T(n,k) = number of graphs with n edges and k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 12, 8, 4, 1, 1, 30, 23, 9, 4, 1, 1, 79, 57, 26, 9, 4, 1, 1, 227, 160, 68, 27, 9, 4, 1, 1, 710, 456, 197, 71, 27, 9, 4, 1, 1, 2322, 1402, 567, 208, 72, 27, 9, 4, 1, 1, 8071, 4468, 1748, 604, 211, 72, 27, 9, 4, 1, 1, 29503, 15071, 5555, 1874
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

Multiset transformation of A002905.

Examples

			      1
      1     1
      3     1     1
      5     4     1     1
     12     8     4     1     1
     30    23     9     4     1     1
     79    57    26     9     4     1     1
    227   160    68    27     9     4     1     1
    710   456   197    71    27     9     4     1     1
   2322  1402   567   208    72    27     9     4     1     1
   8071  4468  1748   604   211    72    27     9     4     1     1
  29503 15071  5555  1874   615   212    72    27     9     4     1
		

Crossrefs

Cf. A002905 (column 1), A000664 (row sums).

Programs

  • Mathematica
    rows = 12;
    A002905 = Import["https://oeis.org/A002905/b002905.txt", "Table"][[All, 2]];
    gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}];
    Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)

Formula

T(n,1) = A002905(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - Alois P. Heinz, Apr 13 2017

A331508 Array read by antidiagonals: A(n,k) is the number of nonisomorphic T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 5, 3, 1, 1, 0, 1, 11, 12, 4, 1, 1, 0, 1, 26, 66, 25, 5, 1, 1, 0, 1, 68, 445, 278, 44, 6, 1, 1, 0, 1, 177, 4279, 5532, 966, 73, 7, 1, 1, 0, 1, 497, 53340, 200589, 53535, 2957, 112, 8, 1, 1, 0, 1, 1476, 846254, 11662671, 7043925, 431805, 8149, 166, 9, 1, 1
Offset: 0

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of nonequivalent binary matrices with k distinct columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.
A(n,k) is the number of non-isomorphic set-systems with k parts each of size n.

Examples

			Array begins:
===============================================
n\k | 0 1 2  3    4      5       6        7
----+------------------------------------------
  0 | 1 1 0  0    0      0       0        0 ...
  1 | 1 1 1  1    1      1       1        1 ...
  2 | 1 1 2  5   11     26      68      177 ...
  3 | 1 1 3 12   66    445    4279    53340 ...
  4 | 1 1 4 25  278   5532  200589 11662671 ...
  5 | 1 1 5 44  966  53535 7043925 ...
  6 | 1 1 6 73 2957 431805 ...
  ...
The A(2,3) = 5 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 1]  [1 0 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))[k]}
    T(n,k)={my(m=n*k, s=0); if(m==0, k<=1, forpart(q=m, my(g=sum(t=1, k, K(q, t, n)*x^t/t) + O(x*x^k)); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), k)); s/m!)}
    { for(n=0, 6, for(k=0, 5, print1(T(n, k), ", ")); print) } \\ Andrew Howroyd, Jan 16 2024

Formula

A306019(n) = Sum_{d|n} A(n/d, d).

A053419 Number of graphs with loops (symmetric relations) with n edges.

Original entry on oeis.org

1, 2, 5, 14, 38, 107, 318, 972, 3111, 10410, 36371, 132656, 504636, 1998361, 8224448, 35112342, 155211522, 709123787, 3342875421, 16234342515, 81102926848, 416244824068, 2192018373522, 11831511359378, 65387590986455, 369661585869273, 2135966349269550, 12604385044890628
Offset: 0

Author

Vladeta Jovovic, Jan 10 2000

Keywords

Comments

In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. a(n) is the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} with no equivalent vertices. For example, non-isomorphic representatives of the a(2) = 5 multiset partitions are (1)(122), (11)(22), (1)(1)(22), (1)(2)(12), (1)(1)(2)(2). - Gus Wiseman, Jul 18 2018
a(n) is the number of unlabeled simple graphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020

Programs

Formula

Euler transform of A191970. - Andrew Howroyd, Oct 22 2019

Extensions

a(16)-a(24) from Max Alekseyev, Jan 22 2010
Terms a(25) and beyond from Andrew Howroyd, Oct 22 2019

A322115 Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 6, 11, 9, 3, 1, 9, 25, 34, 20, 6, 1, 12, 52, 104, 99, 49, 11, 1, 16, 94, 274, 387, 298, 118, 23, 1, 20, 162, 645, 1295, 1428, 881, 300, 47, 1, 25, 263, 1399, 3809, 5803, 5088, 2643, 765, 106, 1, 30, 407, 2823, 10187, 20645, 24606, 17872, 7878, 1998, 235
Offset: 0

Author

Gus Wiseman, Nov 26 2018

Keywords

Examples

			Triangle begins:
  1
  1   1
  1   2   1
  1   4   4   2
  1   6  11   9   3
  1   9  25  34  20   6
  1  12  52 104  99  49  11
		

Crossrefs

Row sums are A007719. Diagonal k = n-1 is A000055.

Programs

  • PARI
    EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
    G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
    R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
    { my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Nov 30 2018

Extensions

Terms a(28) and beyond from Andrew Howroyd, Nov 30 2018

A000608 Number of connected partially ordered sets with n unlabeled elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • G. Melançon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Euler transform of A000112.
Cf. A263864 (multiset transform), A342500 (refined by rank).

Programs

Extensions

More terms from Christian G. Bower, who pointed out connection with A000112, Jan 21 1998 and Dec 12 2001
More terms from Vladeta Jovovic, Jan 04 2006; corrected Jan 15 2006

A095133 Triangle of numbers of forests on n nodes containing k trees.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 11, 11, 7, 4, 2, 1, 1, 23, 23, 14, 8, 4, 2, 1, 1, 47, 46, 29, 15, 8, 4, 2, 1, 1, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1, 551, 488, 284, 143, 69, 34, 16, 8, 4, 2, 1, 1, 1301, 1121, 636, 315, 149, 70, 34, 16, 8, 4, 2, 1, 1
Offset: 1

Author

Eric W. Weisstein, May 29 2004

Keywords

Comments

Row sums are A005195.
For k > n/2, T(n,k) = T(n-1,k-1). - Geoffrey Critzer, Oct 13 2012

Examples

			Triangle begins:
    1;
    1,  1;
    1,  1,  1;
    2,  2,  1,  1;
    3,  3,  2,  1,  1;
    6,  6,  4,  2,  1, 1;
   11, 11,  7,  4,  2, 1, 1;
   23, 23, 14,  8,  4, 2, 1, 1;
   47, 46, 29, 15,  8, 4, 2, 1, 1;
  106, 99, 60, 32, 16, 8, 4, 2, 1, 1;
  ...
		

Crossrefs

Cf. A005195 (row sums), A005196, A106240, A000055 (first column), A274937 (2nd column), A105821.
Limiting sequence of reversed rows gives A215930.
Reflected table is A136605. - Alois P. Heinz, Apr 11 2014

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<=1, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
        end:
    t:= proc(n) option remember; local k; `if` (n=0, 1,
          b(n)-(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j) *
           binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
        end:
    a:= (n, k)-> g(n, n, k):
    seq(seq(a(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 20 2012
  • Mathematica
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);ft=Table[a[i]-Sum[a[j]a[i-j],{j,1,i/2}]+If[OddQ[i],0,a[i/2](a[i/2]+1)/2],{i,1,nn}];CoefficientList[Series[Product[1/(1-y x^i)^ft[[i]],{i,1,nn}],{x,0,20}],{x,y}]//Grid (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000055 *)

Formula

T(n, k) = sum over the partitions of n, 1M1 + 2M2 + ... + nMn, with exactly k parts, of Product_{i=1..n} binomial(A000055(i) + Mi - 1, Mi). - Washington Bomfim, May 12 2005

Extensions

More terms from Vladeta Jovovic, Jun 03 2004

A027416 Number of unlabeled (and unrooted) trees on n nodes having a centroid.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 11, 13, 47, 61, 235, 341, 1301, 1983, 7741, 12650, 48629, 82826, 317955, 564225, 2144505, 3926353, 14828074, 27940136, 104636890, 201837109, 751065460, 1479817181, 5469566585, 10975442036, 40330829030, 82270184950
Offset: 0

Keywords

Comments

Also, number of rooted unlabeled trees on n nodes not having a primary branch.
A tree has either a center or a bicenter and either a centroid or a bicentroid. (These terms were introduced by Jordan.)
If the number of edges in a longest path in the tree is 2m, then the middle node in the path is the unique center, otherwise the two middle nodes in the path are the unique bicenters.
On the other hand, define the weight of a node P to be the greatest number of nodes in any subtree connected to P. Then either there is a unique node of minimal weight, the centroid of the tree, or there is a unique pair of minimal weight nodes, the bicentroids.
Let T be a tree with root node R. If R and the edges incident with it are deleted, the resulting rooted trees are called branches. A primary branch (there can be at most one) has i nodes where n/2 <= i <= n-1.

References

  • F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 35, 36.

Crossrefs

Cf. A102911 (trees with a bicentroid), A027415 (trees with a primary branch), A000676 (trees with a center), A000677 (trees with a bicenter), A000055 (trees), A000081 (rooted trees).

Programs

  • Maple
    N := 50: Y := [ 1,1 ]: for n from 3 to N do x*mul( (1-x^i)^(-Y[ i ]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); Y := [ op(Y),b ]; od: P:=n->sum(Y[n-i]*Y[i],i=1..floor(n/2)): seq(Y[n]-P(n),n=1..35); # Emeric Deutsch, Nov 21 2004

Formula

a(n) = A000055(n) - A102911(n/2) if n is even, else a(n) = A000055(n).
a(n) = A000081(n) - A027415(n). - Emeric Deutsch, Nov 21 2004
a(n) = [x^n] 1 + x/Product_{i=1..ceiling(n/2)-1} (1-x^i)^A000081(i). See Cayley link above. - Geoffrey Critzer, Jul 30 2022

Extensions

More terms from Emeric Deutsch, Nov 21 2004
Entry revised (with new definition) by N. J. A. Sloane, Feb 26 2007

A339063 Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}];
    G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!];
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
    seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!}
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}
Previous Showing 31-40 of 74 results. Next