cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 87 results. Next

A046913 Sum of divisors of n not congruent to 0 mod 3.

Original entry on oeis.org

1, 3, 1, 7, 6, 3, 8, 15, 1, 18, 12, 7, 14, 24, 6, 31, 18, 3, 20, 42, 8, 36, 24, 15, 31, 42, 1, 56, 30, 18, 32, 63, 12, 54, 48, 7, 38, 60, 14, 90, 42, 24, 44, 84, 6, 72, 48, 31, 57, 93, 18, 98, 54, 3, 72, 120, 20, 90, 60, 42, 62, 96, 8, 127, 84, 36, 68, 126
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12 are 1 2 3 4 6 12 and discarding 3 6 and 12 we get a(12) = 1 + 2 + 4 = 7.
x + 3*x^2 + x^3 + 7*x^4 + 6*x^5 + 3*x^6 + 8*x^7 + 15*x^8 + x^9 + 18*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(3*k)-3*SumOfDivisors(k):k in [1..70]]; // Marius A. Burtea, Jun 01 2019
  • Mathematica
    Table[DivisorSigma[1, 3*w]-3*DivisorSigma[1, w], {w, 1, 256}]
    DivisorSum[#1, # &, Mod[#, 3] != 0 &] & /@ Range[68] (* Jayanta Basu, Jun 30 2013 *)
    f[p_, e_] := If[p == 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sigma(3*n) - 3 * sigma(n))} /* Michael Somos, Jul 19 2004 */
    
  • PARI
    a(n) = sigma(n \ 3^valuation(n, 3)) \\ David A. Corneth, Jun 01 2019
    

Formula

Multiplicative with a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) for p<>3. - Vladeta Jovovic, Sep 11 2002
G.f.: Sum_{k>0} x^k*(1+2*x^k+2*x^(3*k)+x^(4*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Dec 18 2002
a(n) = A000203(3n)-3*A000203(n). - Labos Elemer, Aug 14 2003
Inverse Mobius transform of A091684. - Gary W. Adamson, Jul 03 2008
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= u^2 + 9 * v^2 + 16 * w^2 - 6 * u*v + 4 * u*w - 24 * v*w - v + w. - Michael Somos, Jul 19 2004
L.g.f.: log(Product_{k>=1} (1 - x^(3*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
a(n) = A002324(n) + 3*Sum_{j=1, n-1} A002324(j)*A002324(n-j). See Farkas and Guerzhoy links. - Michel Marcus, Jun 01 2019
a(3*n) = a(n). - David A. Corneth, Jun 01 2019
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 18. - Vaclav Kotesovec, Sep 17 2020

A342528 Number of compositions with alternating parts weakly decreasing (or weakly increasing).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 20, 32, 51, 79, 121, 182, 272, 399, 582, 839, 1200, 1700, 2394, 3342, 4640, 6397, 8771, 11955, 16217, 21878, 29386, 39285, 52301, 69334, 91570, 120465, 157929, 206313, 268644, 348674, 451185, 582074, 748830, 960676, 1229208, 1568716, 1997064
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2021

Keywords

Comments

These are finite sequences q of positive integers summing to n such that q(i) >= q(i+2) for all possible i.
The strict case (alternating parts are strictly decreasing) is A000041. Is there a bijective proof?
Yes. Construct a Ferrers diagram by placing odd parts horizontally and even parts vertically in a fishbone pattern. The resulting Ferrers diagram will be for an ordinary partition and the process is reversible. It does not appear that this method can be applied to give a formula for this sequence. - Andrew Howroyd, Mar 25 2021

Examples

			The a(1) = 1 through a(6) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (211)   (131)    (51)
                    (1111)  (212)    (141)
                            (221)    (222)
                            (311)    (231)
                            (1211)   (312)
                            (2111)   (321)
                            (11111)  (411)
                                     (1212)
                                     (1311)
                                     (2121)
                                     (2211)
                                     (3111)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

The even-length case is A114921.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts equal is A342527.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A069916/A342492 = decreasing/increasing first quotients.
A070211/A325546 = weakly decreasing/increasing differences.
A175342/A325545 = constant/distinct differences.
A342495 = constant first quotients (unordered: A342496, strict: A342515, ranking: A342522).

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jan 16 2025
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
  • PARI
    seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p,k,y)*(polcoef(p,k-1,y) + polcoef(p,k,y))))} \\ Andrew Howroyd, Mar 24 2021

Formula

G.f.: Sum_{k>=0} ([y^k] P(x,y))*([y^k] (1 + y)*P(x,y)), where P(x,y) = Product_{k>=1} 1/(1 - y*x^k). - Andrew Howroyd, Jan 16 2025

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 24 2021

A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016).

Examples

			The a(1) = 1 through a(6) = 18 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,1,2)  (4,1)    (4,2)
                     (2,1,1)  (1,1,3)  (5,1)
                              (1,2,2)  (1,1,4)
                              (2,2,1)  (1,2,3)
                              (3,1,1)  (1,3,2)
                                       (2,1,3)
                                       (2,3,1)
                                       (3,1,2)
                                       (3,2,1)
                                       (4,1,1)
                                       (1,1,2,2)
                                       (1,2,2,1)
                                       (2,1,1,2)
                                       (2,2,1,1)
		

Crossrefs

The case of partitions is A000726.
The version for run-lengths instead of runs is A032020.
These words are ranked by A175413.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
    seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022

Formula

a(n>0) = A351016(n)/2.
G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - Andrew Howroyd, Feb 11 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 11 2022

A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0

Views

Author

Noureddine Chair, Aug 29 2004

Keywords

Comments

There are no partitions of 2n+1 in which all odd parts occur with even multiplicity. - Michael Somos, Apr 15 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is also the number of Schur overpartitions of n, i.e., the number of overpartitions of n where adjacent parts differ by at least 3 if the smaller is overlined or divisible by 3 and adjacent parts differ by at least 6 if the smaller is overlined and divisible by 3. - Jeremy Lovejoy, Mar 23 2015
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054. - Peter Bala, Jun 09 2025

Examples

			a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m =  2  [1;  1   9  1    5    8    45   4  1  2  1  1  1  3  3   2  2 ...]
m =  3  [1;  2  13  1   14   12   133   8  1  1  7  2  1  2  2   1  1 ...]
m =  4  [1;  3  17  1   27   16   297  12  2  2  1  1  1  2  2   2  2 ...]
m =  5  [1;  4  21  1   44   20   561  16  2  1  7  3  3  2  2  25  8 ...]
m =  6  [1;  5  25  1   65   24   949  20  3  2  1  1  1  3  4   2  1 ...]
m =  7  [1;  6  29  1   90   28  1485  24  3  1  7  4  5  2  1   1  6 ...]
m =  8  [1;  7  33  1  119   32  2193  28  4  2  1  1  1  4  6   2  1 ...]
m =  9  [1;  8  37  1  152   36  3097  32  4  1  7  5  7  2  1   1  3 ...]
m = 10  [1;  9  41  1  189   40  4221  36  5  2  1  1  1  5  8   2  1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
    # alternative program using expansion of f(q, q^2) / f(-q, -q^2):
    with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */

Formula

Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
Convolution of A000726 and A003105. - R. J. Mathar, Nov 17 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)

A342192 Heinz numbers of partitions of crank 0.

Original entry on oeis.org

6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 100, 106, 118, 122, 134, 140, 142, 146, 158, 166, 178, 194, 196, 202, 206, 214, 218, 220, 226, 254, 260, 262, 274, 278, 298, 300, 302, 308, 314, 326, 334, 340, 346, 358, 362, 364, 380, 382, 386, 394, 398
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
See A257989 or the program for a definition of crank of a partition.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}        106: {1,16}       218: {1,29}
     10: {1,3}        118: {1,17}       220: {1,1,3,5}
     14: {1,4}        122: {1,18}       226: {1,30}
     22: {1,5}        134: {1,19}       254: {1,31}
     26: {1,6}        140: {1,1,3,4}    260: {1,1,3,6}
     34: {1,7}        142: {1,20}       262: {1,32}
     38: {1,8}        146: {1,21}       274: {1,33}
     46: {1,9}        158: {1,22}       278: {1,34}
     58: {1,10}       166: {1,23}       298: {1,35}
     62: {1,11}       178: {1,24}       300: {1,1,2,3,3}
     74: {1,12}       194: {1,25}       302: {1,36}
     82: {1,13}       196: {1,1,4,4}    308: {1,1,4,5}
     86: {1,14}       202: {1,26}       314: {1,37}
     94: {1,15}       206: {1,27}       326: {1,38}
    100: {1,1,3,3}    214: {1,28}       334: {1,39}
		

Crossrefs

Indices of zeros in A257989.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001522 counts partitions of positive crank.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Select[Range[100],ck[primeMS[#]]==0&]

A104502 Number of partitions where no part is a multiple of 9.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 54, 74, 96, 128, 165, 216, 275, 354, 447, 569, 712, 896, 1113, 1388, 1712, 2117, 2595, 3186, 3882, 4735, 5739, 6959, 8392, 10121, 12150, 14582, 17429, 20823, 24789, 29494, 34979, 41456, 48993, 57856, 68148, 80204
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Comments

Coefficients of the B-Dyson Mod 27 identity.
Also partitions where parts are repeated at most 8 times. - Joerg Arndt, Dec 31 2012

Examples

			G.f. = 1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + 29*q^9 + ...
B(q) = q + q^4 + 2*q^7 + 3*q^10 + 5*q^13 + 7*q^16 + 11*q^19 + 15*q^22 + ...
		

References

  • F. J. Dyson, A walk through Ramanujan's garden, pp. 7-28 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988, see p. 15, eq. (11).

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    seq(coeff(series(mul((1-x^(9*k))/(1-x^k),k=1..n),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    a[n_] := a[n] = (1/n) Sum[DivisorSum[k, Boole[!Divisible[#, 9]] #&] a[n-k], {k, 1, n}]; a[0] = 1;
    a /@ Range[0, 50] (* Jean-François Alcover, Oct 01 2019, after Seiichi Manyama *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 9], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 29 2020 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^9 + A) / eta(x + A), n))}; /* Michael Somos, Jan 09 2006 */
    
  • PARI
    {A116607(n)=sigma(n)-if(n%9==0, 9*sigma(n/9))}
    {a(n)=polcoeff(exp(sum(k=1, n+1, A116607(k)*x^k/k+x*O(x^n))), n)} /* Paul D. Hanna, Jun 13 2011 */

Formula

Expansion of q^(-1/3) * eta(q^9) / eta(q) in powers of q. - Michael Somos, Jan 09 2006
Euler transform of period 9 sequence [1, 1, 1, 1, 1, 1, 1, 1, 0, ...]. - Michael Somos, Jan 09 2006
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^3 + v^3 - u*v - 3*(u*v)^2. - Michael Somos, Jan 09 2006
G.f.: Product_{k>0} (1-x^(9k))/(1-x^k) = 1 + 1/(1-x)*(Sum_{k>0} x^(k^2+k) Product_{i=1..k} (1+x^i+x^(2i))/((1-x^(2i))*(1-x^(2i+1))))
G.f. A(x) = 1/g.f. A062246.
Logarithmic derivative yields A116607 (sum of the divisors of n which are not divisible by 9). - Paul D. Hanna, Jun 13 2011
a(n) ~ 2*Pi * BesselI(1, 4*sqrt(3*n + 1) * Pi/9) / (9*sqrt(3*n + 1)) ~ exp(4*Pi*sqrt(n/3)/3) / (sqrt(2) * 3^(7/4) * n^(3/4)) * (1 + (2*Pi/(9*sqrt(3)) - 9*sqrt(3)/(32*Pi)) / sqrt(n) + (2*Pi^2/243 - 405/(2048*Pi^2) - 5/16) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A116607(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series that satisfies f(-1 / (81 t)) = 1/3 g(t) where g() is the g.f. for A062246. - Michael Somos, Jun 27 2017

Extensions

Simplified definition. - N. J. A. Sloane, Oct 20 2019

A342527 Number of compositions of n with alternating parts equal.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 11, 12, 16, 17, 21, 20, 29, 24, 31, 32, 38, 32, 46, 36, 51, 46, 51, 44, 69, 51, 61, 60, 73, 56, 87, 60, 84, 74, 81, 76, 110, 72, 91, 88, 115, 80, 123, 84, 117, 112, 111, 92, 153, 101, 132, 116, 139, 104, 159, 120, 161, 130, 141, 116, 205, 120, 151, 156, 178, 142, 195, 132, 183, 158
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2021

Keywords

Comments

These are finite sequences q of positive integers summing to n such that q(i) = q(i+2) for all possible i.

Examples

			The a(1) = 1 through a(8) = 16 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (121)   (41)     (42)      (43)       (44)
                    (1111)  (131)    (51)      (52)       (53)
                            (212)    (141)     (61)       (62)
                            (11111)  (222)     (151)      (71)
                                     (1212)    (232)      (161)
                                     (2121)    (313)      (242)
                                     (111111)  (12121)    (323)
                                               (1111111)  (1313)
                                                          (2222)
                                                          (3131)
                                                          (21212)
                                                          (11111111)
		

Crossrefs

The odd-length case is A062968.
The even-length case is A065608.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts weakly decreasing is A342528.
A000005 counts constant compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A175342 counts compositions with constant differences.
A342495 counts compositions with constant first quotients.
A342496 counts partitions with constant first quotients (strict: A342515, ranking: A342522).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Formula

a(n) = 1 + n + A000203(n) - 2*A000005(n).
a(n) = A065608(n) + A062968(n).

A219601 Number of partitions of n in which no parts are multiples of 6.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 23 2012

Keywords

Comments

Also partitions where parts are repeated at most 5 times. [Joerg Arndt, Dec 31 2012]

Examples

			7 = 7
  = 5 + 2
  = 5 + 1 + 1
  = 4 + 3
  = 4 + 2 + 1
  = 4 + 1 + 1 + 1
  = 3 + 3 + 1
  = 3 + 2 + 2
  = 3 + 2 + 1 + 1
  = 3 + 1 + 1 + 1 + 1
  = 2 + 2 + 2 + 1
  = 2 + 2 + 1 + 1 + 1
  = 2 + 1 + 1 + 1 + 1 + 1
  = 1 + 1 + 1 + 1 + 1 + 1 + 1
so a(7) = 14.
		

Crossrefs

Cf. A097797.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Mathematica
    m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 6], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
  • PARI
    for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))

Formula

G.f.: P(x^6)/P(x), where P(x) = prod(k>=1, 1-x^k).
a(n) ~ Pi*sqrt(5) * BesselI(1, sqrt(5*(24*n + 5)/6) * Pi/6) / (3*sqrt(24*n + 5)) ~ exp(Pi*sqrt(5*n)/3) * 5^(1/4) / (12 * n^(3/4)) * (1 + (5^(3/2)*Pi/144 - 9/(8*Pi*sqrt(5))) / sqrt(n) + (125*Pi^2/41472 - 27/(128*Pi^2) - 25/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284326(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A035985 Number of partitions of n into parts not a multiple of 7. Also number of partitions with at most 6 parts of size 1 and differences between parts at distance 9 are greater than 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 119, 153, 199, 252, 324, 406, 515, 642, 804, 994, 1236, 1517, 1869, 2282, 2791, 3387, 4118, 4970, 6006, 7217, 8673, 10374, 12411, 14780, 17601, 20883, 24766, 29274, 34588, 40741, 47964, 56319, 66080, 77350
Offset: 0

Views

Author

Keywords

Comments

Case k=10, i=7 of Gordon Theorem.

Examples

			B(x) = x +x^5 +2*x^9 +3*x^13 +5*x^17 +7*x^21 +11*x^25 +14*x^29 +...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
Cf. A320609.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    QP = QPochhammer; s = QP[q^7]/QP[q] + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 7], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^7+A)/eta(x+A), n))} /* Michael Somos, Jan 17 2006 */
    
  • PARI
    Vec(prod(k=1, 50, (1 - x^(7*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017
    
  • PARI
    A035985_upto(N,q='x+O('x^N))=Vec(eta(q^7)/eta(q)) \\ M. F. Hasler, Dec 09 2019

Formula

Euler transform of period 7 sequence [1, 1, 1, 1, 1, 1, 0, ...]. - Michael Somos, Jan 17 2006
Given g.f. A(x), then B(x)=x*A(x^4) satisfies 0=f(B(x), B(x^3)) where f(u, v)=(u^4+v^4)-u*v*(1+3*u*v+7*(u*v)^2).
G.f.: Product_{k>0} (1-x^(7k))/(1-x^k).
Given g.f. A(x) then B(x)=x*A(x)^4 satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u,v,w)= (u^2+u*w+w^2) -v -8*v*(u+v+w) -49*v^2*(u+w). - Michael Somos, May 28 2006
G.f. is product k>0 P7(x^k) where P7 is 7th cyclotomic polynomial.
Expansion of q^(-1/4)eta(q^7)/eta(q) in powers of q. - Michael Somos, Jan 17 2006
a(n) ~ 2*Pi * BesselI(1, sqrt((4*n + 1)/7) * Pi) / (7*sqrt(4*n + 1)) ~ exp(2*Pi*sqrt(n/7)) / (2 * 7^(3/4) * n^(3/4)) * (1 + (Pi/(4*sqrt(7)) - 3*sqrt(7)/(16*Pi)) / sqrt(n) + (Pi^2/224 - 105/(512*Pi^2) - 15/64) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A113957(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

Extensions

Definition simplified by N. J. A. Sloane, Oct 20 2019

A261776 Expansion of Product_{k>=1} (1 - x^(10*k))/(1 - x^k).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 584, 735, 923, 1151, 1435, 1775, 2194, 2698, 3311, 4045, 4935, 5994, 7270, 8787, 10600, 12749, 15310, 18330, 21912, 26130, 31107, 36949, 43823, 51863, 61290, 72293, 85145, 100107
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

General asymptotic formula (Hagis, 1971): If s > 1 and g.f. = Product_{k>=1} (1 - x^(s*k))/(1 - x^k), then a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), minor asymptotic terms added by Vaclav Kotesovec, Jan 13 2017
The formula in the article by Noureddine Chair: "The Euler-Riemann Gases, and Partition Identities", p. 32, is incorrect (must be s -> s-1 and 24 -> 24*n).
Number of partitions in which no part occurs more than 9 times. - Ilya Gutkovskiy, May 31 2017

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(10*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 10], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 29 2020 *)
  • PARI
    Vec(prod(k=1, 51, (1 - x^(10*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) ~ 3*Pi * BesselI(1, sqrt((24*n + 9)/10) * Pi/2) / (5*sqrt(24*n + 9)) ~ exp(Pi*sqrt(3*n/5)) * 3^(1/4) / (4 * 5^(3/4) * n^(3/4)) * (1 + (3^(3/2)*Pi/(16*sqrt(5)) - sqrt(15)/(8*Pi)) / sqrt(n) + (27*Pi^2/2560 - 25/(128*Pi^2) - 45/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284344(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
Previous Showing 11-20 of 87 results. Next