A046913
Sum of divisors of n not congruent to 0 mod 3.
Original entry on oeis.org
1, 3, 1, 7, 6, 3, 8, 15, 1, 18, 12, 7, 14, 24, 6, 31, 18, 3, 20, 42, 8, 36, 24, 15, 31, 42, 1, 56, 30, 18, 32, 63, 12, 54, 48, 7, 38, 60, 14, 90, 42, 24, 44, 84, 6, 72, 48, 31, 57, 93, 18, 98, 54, 3, 72, 120, 20, 90, 60, 42, 62, 96, 8, 127, 84, 36, 68, 126
Offset: 1
Divisors of 12 are 1 2 3 4 6 12 and discarding 3 6 and 12 we get a(12) = 1 + 2 + 4 = 7.
x + 3*x^2 + x^3 + 7*x^4 + 6*x^5 + 3*x^6 + 8*x^7 + 15*x^8 + x^9 + 18*x^10 + ...
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Hershel M. Farkas, On an arithmetical function, Ramanujan J., Vol. 8, No. 3 (2004), pp. 309-315.
- Pavel Guerzhoy and Ka Lun Wong, Farkas' identities with quartic characters, The Ramanujan Journal (2020), preprint, arXiv:1905.06506 [math.NT], 2019.
-
[SumOfDivisors(3*k)-3*SumOfDivisors(k):k in [1..70]]; // Marius A. Burtea, Jun 01 2019
-
Table[DivisorSigma[1, 3*w]-3*DivisorSigma[1, w], {w, 1, 256}]
DivisorSum[#1, # &, Mod[#, 3] != 0 &] & /@ Range[68] (* Jayanta Basu, Jun 30 2013 *)
f[p_, e_] := If[p == 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
{a(n) = if( n<1, 0, sigma(3*n) - 3 * sigma(n))} /* Michael Somos, Jul 19 2004 */
-
a(n) = sigma(n \ 3^valuation(n, 3)) \\ David A. Corneth, Jun 01 2019
A342528
Number of compositions with alternating parts weakly decreasing (or weakly increasing).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 20, 32, 51, 79, 121, 182, 272, 399, 582, 839, 1200, 1700, 2394, 3342, 4640, 6397, 8771, 11955, 16217, 21878, 29386, 39285, 52301, 69334, 91570, 120465, 157929, 206313, 268644, 348674, 451185, 582074, 748830, 960676, 1229208, 1568716, 1997064
Offset: 0
The a(1) = 1 through a(6) = 20 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1212)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
The version with alternating parts unequal is
A224958 (unordered:
A000726).
The version with alternating parts equal is
A342527.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
Cf.
A001522,
A008965,
A048004,
A059966,
A062968,
A064410,
A064428,
A065608,
A167606,
A325557,
A342519.
-
b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
end:
a:= n-> b(n$3):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 16 2025
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
-
seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p,k,y)*(polcoef(p,k-1,y) + polcoef(p,k,y))))} \\ Andrew Howroyd, Mar 24 2021
A351018
Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0
The a(1) = 1 through a(6) = 18 compositions:
(1) (2) (3) (4) (5) (6)
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3)
(1,1,2) (4,1) (4,2)
(2,1,1) (1,1,3) (5,1)
(1,2,2) (1,1,4)
(2,2,1) (1,2,3)
(3,1,1) (1,3,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
(4,1,1)
(1,1,2,2)
(1,2,2,1)
(2,1,1,2)
(2,2,1,1)
The version for run-lengths instead of runs is
A032020.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A116608 counts compositions by number of distinct parts.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
-
A351202 = permutations of prime factors.
Cf.
A003242,
A025047,
A098504,
A098859,
A106356,
A212322,
A328592,
A329740,
A334028,
A349054,
A350952,
A351205.
-
Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
-
P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022
A098151
Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.
Original entry on oeis.org
1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0
a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m = 2 [1; 1 9 1 5 8 45 4 1 2 1 1 1 3 3 2 2 ...]
m = 3 [1; 2 13 1 14 12 133 8 1 1 7 2 1 2 2 1 1 ...]
m = 4 [1; 3 17 1 27 16 297 12 2 2 1 1 1 2 2 2 2 ...]
m = 5 [1; 4 21 1 44 20 561 16 2 1 7 3 3 2 2 25 8 ...]
m = 6 [1; 5 25 1 65 24 949 20 3 2 1 1 1 3 4 2 1 ...]
m = 7 [1; 6 29 1 90 28 1485 24 3 1 7 4 5 2 1 1 6 ...]
m = 8 [1; 7 33 1 119 32 2193 28 4 2 1 1 1 4 6 2 1 ...]
m = 9 [1; 8 37 1 152 36 3097 32 4 1 7 5 7 2 1 1 3 ...]
m = 10 [1; 9 41 1 189 40 4221 36 5 2 1 1 1 5 8 2 1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016.
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- Shane Chern, Dennis Eichhorn, Shishuo Fu, and James A. Sellers, Convolutive sequences, I: Through the lens of integer partition functions, arXiv:2507.10965 [math.CO], 2025. See pp. 4, 14-16.
- Byungchan Kim and Eunmi Kim, Partitions weighted by the number of two types of parts, Bull. Korean Math. Soc. (2024) Vol. 61, No. 6, 1677-1684. See p. 1679.
- Jeremy Lovejoy, A theorem on seven-colored overpartitions and its applications, Int. J. Number Theory. 1 (2005) 215-224
- Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
- Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S24.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
-
series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
# alternative program using expansion of f(q, q^2) / f(-q, -q^2):
with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */
A342192
Heinz numbers of partitions of crank 0.
Original entry on oeis.org
6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 100, 106, 118, 122, 134, 140, 142, 146, 158, 166, 178, 194, 196, 202, 206, 214, 218, 220, 226, 254, 260, 262, 274, 278, 298, 300, 302, 308, 314, 326, 334, 340, 346, 358, 362, 364, 380, 382, 386, 394, 398
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 106: {1,16} 218: {1,29}
10: {1,3} 118: {1,17} 220: {1,1,3,5}
14: {1,4} 122: {1,18} 226: {1,30}
22: {1,5} 134: {1,19} 254: {1,31}
26: {1,6} 140: {1,1,3,4} 260: {1,1,3,6}
34: {1,7} 142: {1,20} 262: {1,32}
38: {1,8} 146: {1,21} 274: {1,33}
46: {1,9} 158: {1,22} 278: {1,34}
58: {1,10} 166: {1,23} 298: {1,35}
62: {1,11} 178: {1,24} 300: {1,1,2,3,3}
74: {1,12} 194: {1,25} 302: {1,36}
82: {1,13} 196: {1,1,4,4} 308: {1,1,4,5}
86: {1,14} 202: {1,26} 314: {1,37}
94: {1,15} 206: {1,27} 326: {1,38}
100: {1,1,3,3} 214: {1,28} 334: {1,39}
A000005 counts constant partitions.
A001522 counts partitions of positive crank.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
Select[Range[100],ck[primeMS[#]]==0&]
A104502
Number of partitions where no part is a multiple of 9.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 54, 74, 96, 128, 165, 216, 275, 354, 447, 569, 712, 896, 1113, 1388, 1712, 2117, 2595, 3186, 3882, 4735, 5739, 6959, 8392, 10121, 12150, 14582, 17429, 20823, 24789, 29494, 34979, 41456, 48993, 57856, 68148, 80204
Offset: 0
G.f. = 1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + 29*q^9 + ...
B(q) = q + q^4 + 2*q^7 + 3*q^10 + 5*q^13 + 7*q^16 + 11*q^19 + 15*q^22 + ...
- F. J. Dyson, A walk through Ramanujan's garden, pp. 7-28 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988, see p. 15, eq. (11).
Number of r-regular partitions for r = 2 through 12:
A000009,
A000726,
A001935,
A035959,
A219601,
A035985,
A261775,
A104502,
A261776,
A328545,
A328546.
-
seq(coeff(series(mul((1-x^(9*k))/(1-x^k),k=1..n),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Sep 29 2018
-
nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
a[n_] := a[n] = (1/n) Sum[DivisorSum[k, Boole[!Divisible[#, 9]] #&] a[n-k], {k, 1, n}]; a[0] = 1;
a /@ Range[0, 50] (* Jean-François Alcover, Oct 01 2019, after Seiichi Manyama *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 9], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 29 2020 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^9 + A) / eta(x + A), n))}; /* Michael Somos, Jan 09 2006 */
-
{A116607(n)=sigma(n)-if(n%9==0, 9*sigma(n/9))}
{a(n)=polcoeff(exp(sum(k=1, n+1, A116607(k)*x^k/k+x*O(x^n))), n)} /* Paul D. Hanna, Jun 13 2011 */
A342527
Number of compositions of n with alternating parts equal.
Original entry on oeis.org
1, 1, 2, 4, 6, 8, 11, 12, 16, 17, 21, 20, 29, 24, 31, 32, 38, 32, 46, 36, 51, 46, 51, 44, 69, 51, 61, 60, 73, 56, 87, 60, 84, 74, 81, 76, 110, 72, 91, 88, 115, 80, 123, 84, 117, 112, 111, 92, 153, 101, 132, 116, 139, 104, 159, 120, 161, 130, 141, 116, 205, 120, 151, 156, 178, 142, 195, 132, 183, 158
Offset: 0
The a(1) = 1 through a(8) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(121) (41) (42) (43) (44)
(1111) (131) (51) (52) (53)
(212) (141) (61) (62)
(11111) (222) (151) (71)
(1212) (232) (161)
(2121) (313) (242)
(111111) (12121) (323)
(1111111) (1313)
(2222)
(3131)
(21212)
(11111111)
The version with alternating parts unequal is
A224958 (unordered:
A000726).
The version with alternating parts weakly decreasing is
A342528.
A000005 counts constant compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A175342 counts compositions with constant differences.
A342495 counts compositions with constant first quotients.
Cf.
A001522,
A008965,
A048004,
A059966,
A064410,
A064428,
A069916,
A114921,
A167606,
A325545,
A325557.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
A219601
Number of partitions of n in which no parts are multiples of 6.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592
Offset: 0
7 = 7
= 5 + 2
= 5 + 1 + 1
= 4 + 3
= 4 + 2 + 1
= 4 + 1 + 1 + 1
= 3 + 3 + 1
= 3 + 2 + 2
= 3 + 2 + 1 + 1
= 3 + 1 + 1 + 1 + 1
= 2 + 2 + 2 + 1
= 2 + 2 + 1 + 1 + 1
= 2 + 1 + 1 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1 + 1 + 1
so a(7) = 14.
Number of r-regular partitions for r = 2 through 12:
A000009,
A000726,
A001935,
A035959,
A219601,
A035985,
A261775,
A104502,
A261776,
A328545,
A328546.
-
m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 6], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
-
for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))
A035985
Number of partitions of n into parts not a multiple of 7. Also number of partitions with at most 6 parts of size 1 and differences between parts at distance 9 are greater than 1.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 119, 153, 199, 252, 324, 406, 515, 642, 804, 994, 1236, 1517, 1869, 2282, 2791, 3387, 4118, 4970, 6006, 7217, 8673, 10374, 12411, 14780, 17601, 20883, 24766, 29274, 34588, 40741, 47964, 56319, 66080, 77350
Offset: 0
B(x) = x +x^5 +2*x^9 +3*x^13 +5*x^17 +7*x^21 +11*x^25 +14*x^29 +...
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- GDZ, Digitized volumes of Crelle
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. This sequence arises as the coefficients of Y = C/B on p. 118.
Number of r-regular partitions for r = 2 through 12:
A000009,
A000726,
A001935,
A035959,
A219601,
A035985,
A261775,
A104502,
A261776,
A328545,
A328546.
-
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
QP = QPochhammer; s = QP[q^7]/QP[q] + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 7], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
-
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^7+A)/eta(x+A), n))} /* Michael Somos, Jan 17 2006 */
-
Vec(prod(k=1, 50, (1 - x^(7*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017
-
A035985_upto(N,q='x+O('x^N))=Vec(eta(q^7)/eta(q)) \\ M. F. Hasler, Dec 09 2019
A261776
Expansion of Product_{k>=1} (1 - x^(10*k))/(1 - x^k).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 584, 735, 923, 1151, 1435, 1775, 2194, 2698, 3311, 4045, 4935, 5994, 7270, 8787, 10600, 12749, 15310, 18330, 21912, 26130, 31107, 36949, 43823, 51863, 61290, 72293, 85145, 100107
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Noureddine Chair, The Euler-Riemann Gases, and Partition Identities, arXiv:1306.5415 [math-ph], 2013, p. 32.
- Peter Hagis jr., Partitions with a restriction on the multiplicity of the summands, Transactions of the American Mathematical Society, Volume 155, Number 2, April 1971.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
Number of r-regular partitions for r = 2 through 12:
A000009,
A000726,
A001935,
A035959,
A219601,
A035985,
A261775,
A104502,
A261776,
A328545,
A328546.
-
nmax = 50; CoefficientList[Series[Product[(1 - x^(10*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 10], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 29 2020 *)
-
Vec(prod(k=1, 51, (1 - x^(10*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017
Comments