cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A038505 Sum of every 4th entry of row n in Pascal's triangle, starting at binomial(n,2).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256, 528, 1056, 2080, 4096, 8128, 16256, 32640, 65536, 131328, 262656, 524800, 1048576, 2096128, 4192256, 8386560, 16777216, 33558528, 67117056, 134225920, 268435456, 536854528, 1073709056
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 0 and subtrace 1.
Same as number of strings over GF(2) of length n with trace 0 and subtrace 1.
Binomial transform of (0,1,1,0,0,1,1,0,...) gives a(n) for n >= 1. - Paul Barry, Jul 07 2003
From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0] = [A038503(n), A000749(n), a(n), A038504(n)]; where M = a 4 X 4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1]. Sum of terms = 2^n.
Example: M^6 * [1,0,0,0] [16, 20, 16, 12]; sum = 2^6 = 64. (End)
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions of order 4, {h_1(x), h_2(x), h_3(x), h_4(x)}. For a definition of {h_i(x)} and the difference analog {H_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jun 14 2017

Examples

			a(3; 0, 1) = 3 since the three binary strings of trace 0, subtrace 1 and length 3 are { 011, 101, 110 }.
		

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • GAP
    List([0..35],n->Sum([0..n],k->Binomial(n,2+4*k))); # Muniru A Asiru, Feb 21 2019
  • Haskell
    a038505 n = a038505_list !! n
    a038505_list = tail $ zipWith (-) (tail a000749_list) a000749_list
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Magma
    I:=[0, 0, 1, 3]; [n le 3 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    # From Peter Luschny, Jun 15 2017: (Start)
    s := sqrt(2): h := n -> [-2, -s, 0, s, 2, s, 0, -s][1 + (n mod 8)]:
    a := n -> `if`(n=0, 0, (2^n + 2^(n/2)*h(n))/4): seq(a(n), n=0..32);
    # Alternatively:
    egf := (1 + exp(2*x) - 2*exp(x)*cos(x))/4:
    series(egf, x, 33): seq(n!*coeff(%,x,n), n=0..32); # (End)
  • Mathematica
    LinearRecurrence[{4, -6, 4}, {0, 0, 1, 3}, 40] (* Vincenzo Librandi, Jun 22 2012 *)
    Table[If[n==0, 0, 2^(n-2) - 2^(n/2-1) Cos[Pi*n/4]], {n, 0, 32}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • Sage
    A = lambda n: (2^n - (1-I)^n - (1+I)^n) / 4 if n != 0 else 0
    print([A(n) for n in (0..32)]) # Peter Luschny, Jun 16 2017
    

Formula

a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
a(n) = Sum_{k=0..n} binomial(n, 2 + 4*k), n >= 0.
a(n) = Sum_{k=0..n} (1/2)*C(n, k)*(-1)^C(k+3, 3) for n >= 1. - Paul Barry, Jul 07 2003
From Paul Barry, Nov 29 2004: (Start)
G.f.: x^2*(1-x)/((1-x)^4-x^4) = x^2*(1-x)/((1-2*x)*(1-2*x+2*x^2));
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*(1-(-1)^k)/2. (End)
Conjecture: 2*a(n+2) = A038504(n+2) + A000749(n+2) + 2*A009545(n). - Creighton Dement, May 22 2005
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3; sequence is identical to its fourth differences. - Paul Curtz, Dec 21 2007
a(n) = A000749(n+1) - A000749(n). - Reinhard Zumkeller, Jul 15 2013
a(n+m) = a(n)*H_1(m) + H_2(n)*H_2(m) + H_1(n)*a(m) + H_4(n)*H_4(m),
where H_1=A038503, H_2=A038504, H_4=A000749. - Vladimir Shevelev, Jun 14 2017
From Peter Luschny, Jun 15 2017: (Start)
a(n) = n! [x^n] (1 + exp(2*x) - 2*exp(x)*cos(x))/4.
a(n) = A038503(n+2) - 2*A038503(n+1) + A038503(n).
a(n) = 2^(n-2) - A046980(n)*2^(A004525(n-3)) for n >= 1.
a(n) = (2^n - (1-i)^n - (1+i)^n) / 4 for n >= 1. Compare V. Shevelevs' formula (1) in A000749. (End)
From Vladimir Shevelev, Jun 16 2017: (Start)
Proof of the conjecture by Creighton Dement (May 22 2005): using the first formula of Theorem 1 in [Shevelev link] for n=4, omega=i=sqrt(-1), i:=1,2,3,4, m:=n>=1, we have
a(n) = (1/2)*(2^(n-1)-2^(n/2)*cos(Pi*n/4)), A038504(n) = (1/2)*(2^(n-1)+2^(n/2)* sin(Pi*n/4)), A000749(n) = (1/2)*(2^(n-1)-2^(n/2)*sin(Pi*n/4)). Finally we use the formula by Paul Barry: A009545(n) = 2^(n/2)*sin(Pi*n/4) = 2^(n/2)*(-cos(Pi*(n+2)/4)). Now it is easy to obtain the hypothetical formula. (End)

Extensions

Missing 0 prepended by Vladimir Shevelev, Jun 14 2017
Edited by Peter Luschny, Jun 16 2017

A139398 a(n) = Sum_{k >= 0} binomial(n,5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 254, 474, 859, 1574, 3004, 6008, 12393, 25773, 53143, 107883, 215766, 427351, 843756, 1669801, 3321891, 6643782, 13333932, 26789257, 53774932, 107746282, 215492564, 430470899, 859595529, 1717012749, 3431847189, 6863694378
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2008

Keywords

Comments

From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0,0] = [a(n), A139761(n), A139748(n), A139714(n), A133476(n)]
where M = the 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1]
Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7]; sum = 2^6 = 64. (End)
{A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 14 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Ch. 18.

Crossrefs

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jun 27 2017
  • Maple
    f:=(n,r,a) -> add(binomial(n,r*k+a),k=0..n); fs:=(r,a)->[seq(f(n,r,a),n=0..40)];
    A139398_list := proc(n) local i; (exp(z)^2+2*exp(3/4*z+1/4*z*sqrt(5))* cos(1/4*z*sqrt(2)*sqrt(5+sqrt(5)))+2*exp(3/4*z-1/4*z*sqrt(5))* cos(1/4*z*sqrt(2)*sqrt(5-sqrt(5))))/5; series(%,z,n+2): seq(simplify(i!*coeff(%,z,i)), i=0..n) end: A139398_list(35); # Peter Luschny, Jul 10 2012
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,2},{1,1,1,1,1},40] (* Harvey P. Dale, Jun 11 2015 *)
    Expand@Table[(2^n + Sqrt[5] (Cos[Pi n/5] - (-1)^n Cos[2 Pi n/5]) Fibonacci[n] + (Cos[Pi n/5] + (-1)^n Cos[2 Pi n/5]) LucasL[n])/5, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)

Formula

G.f.: -(x-1)^4/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
E.g.f.: (exp(z)^2+2*exp(3/4*z+1/4*z*sqrt(5))*cos(1/4*z*sqrt(2)*sqrt(5+sqrt(5)))+ 2*exp(3/4*z-1/4*z*sqrt(5))*cos(1/4*z*sqrt(2)*sqrt(5-sqrt(5))))/5. - Peter Luschny, Jul 10 2012
a(n) = (2^n + sqrt(5)*(cos(Pi*n/5) - (-1)^n*cos(2*Pi*n/5))*A000045(n) + (cos(Pi*n/5) + (-1)^n*cos(2*Pi*n/5))*A000032(n))/5. - Vladimir Reshetnikov, Oct 04 2016
From Vladimir Shevelev, Jun 17 2017: (Start)
a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*n/5))), where phi is the golden ratio and round(x) is the integer nearest to x.
The formula follows from the identity a(n)=1/5*Sum_{j=1..5}((omega_5)^j + 1)^n, where omega_5=exp(2*Pi*i)/5 (cf. Theorem 1 of [Shevelev] link for i=1, n=5, m:=n). Further note that for a=cos(x)+i*sin(x), a+1 = 2*cos ^2 (x/2) + i*sin(x), and for the argument y of a+1 we have tan(y)=tan(x/2) and r^2 = 4*cos^4(x/2) + sin^2(x) = 4*cos^2(x/2). So (a+1)^n = (2*cos(x /2))^n*(cos(n*x/2) + i*sin(n*x/2)). Using this, for x=2*Pi/5, we have (omega_5+1)^n = phi^n(cos(Pi*n/5) + i*sin(Pi*n/5)). Since (omega_5)^4+1=(1+omega_5)/omega_5, we easily find that ((omega_5)^4+1)^n is conjugate to (omega_5+1)^n. So (omega_5+1)^n+((omega_5)^4+1)^n = phi^n*cos(Pi*n/5). Further, we similarly obtain that (omega_5)^2+1 is conjugate to (omega_5) ^3+1=(1+(omega_5)^2)/(omega_5)^2 and ((omega_5)^2+1)^n +((omega_5)^3+1)^n = 2*(sqrt(2-phi))^n*cos(2*Pi*n/5). The absolute value of the latter <= 2*(2-phi)^(n/2) and quickly tends to 0. Finally, ((omega_5)^5+1)^n=2^n, and the formula follows. (End)
a(n+m) = a(n)*a(m) + H_2(n)*H_5(m) + H_3(n)*H_4(m) + H_4(n)*H_3(m) + H_5(n)*H_2(m), where H_2=A133476, H_3=A139714, H_4=A139748, H_5=A139761. - Vladimir Shevelev, Jun 17 2017

A049016 Expansion of 1/((1-x)^5 - x^5).

Original entry on oeis.org

1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), this sequence (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^5-x^5),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-10,10,-5,2},{1,5,15,35,70},40] (* Harvey P. Dale, Jan 20 2014 *)
  • SageMath
    def A049016_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^5-x^5) ).list()
    A049016_list(30) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).
a(10*n+3) = A078789(5*n+3).
a(10*n+5) = A078789(5*n+4).
a(n) = (-1)^n * A000750(n).
Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - Paul Barry, Mar 19 2004
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - Paul Curtz, May 24 2008
G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013

A135356 Triangle T(n,k) read by rows: coefficients in the recurrence of sequences which equal their n-th differences.

Original entry on oeis.org

2, 2, 0, 3, -3, 2, 4, -6, 4, 0, 5, -10, 10, -5, 2, 6, -15, 20, -15, 6, 0, 7, -21, 35, -35, 21, -7, 2, 8, -28, 56, -70, 56, -28, 8, 0, 9, -36, 84, -126, 126, -84, 36, -9, 2, 10, -45, 120, -210, 252, -210, 120, -45, 10, 0, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 2
Offset: 1

Views

Author

Paul Curtz, Dec 08 2007, Mar 25 2008, Apr 28 2008

Keywords

Comments

Sequences which equal their p-th differences obey recurrences a(n) = Sum_{s=1..p} T(p,s)*a(n-s).
This defines T(p,s) as essentially a signed version of a chopped Pascal triangle A014410, see A130785.
For cases like p=2, 4, 6, 8, 10, 12, 14, the denominator of the rational generating function of a(n) contains a factor 1-x; depending on the first terms in the sequences a(n), additional, simpler recurrences may exist if this cancels with a factor in the numerator. - R. J. Mathar, Jun 10 2008

Examples

			Triangle begins with row n=1:
  2;
  2,   0;
  3,  -3,  2;
  4,  -6,  4,    0;
  5, -10, 10,   -5,   2;
  6, -15, 20,  -15,   6,   0;
  7, -21, 35,  -35,  21,  -7,  2;
  8, -28, 56,  -70,  56, -28,  8,  0;
  9, -36, 84, -126, 126, -84, 36, -9, 2;
		

Crossrefs

Related sequences: A000079 (n=1), A131577 (n=2), (A131708 , A130785, A131562, A057079) (n=3), (A000749, A038503, A009545, A038505) (n=4), A133476 (n=5), A140343 (n=6), A140342 (n=7).

Programs

  • Magma
    A135356:= func< n,k | k eq n select 1-(-1)^n else (-1)^(k+1)*Binomial(n,k) >;
    [A135356(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 09 2023
    
  • Maple
    T:= (p, s)->  `if`(p=s, 2*irem(p, 2), (-1)^(s+1) *binomial(p, s)):
    seq(seq(T(p, s), s=1..p), p=1..11);  # Alois P. Heinz, Aug 26 2011
  • Mathematica
    T[p_, s_]:= If[p==s, 2*Mod[s, 2], (-1)^(s+1)*Binomial[p, s]];
    Table[T[p, s], {p, 12}, {s, p}]//Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
  • SageMath
    def A135356(n,k):
        if (k==n): return 2*(n%2)
        else: return (-1)^(k+1)*binomial(n,k)
    flatten([[A135356(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Apr 09 2023

Formula

T(n,k) = (-1)^(k+1)*A007318(n, k). T(n,n) = 1 - (-1)^n.
Sum_{k=1..n} T(n, k) = 2.
From G. C. Greubel, Apr 09 2023: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = 2*A051049(n-1).
Sum_{k=1..n-1} T(n, k) = (1 + (-1)^n).
Sum_{k=1..n-1} (-1)^(k-1)*T(n, k) = A000225(n-1).
T(2*n, n) = (-1)^(n-1)*A000984(n), n >= 1. (End)

Extensions

Edited by R. J. Mathar, Jun 10 2008

A049017 Expansion of 1/((1-x)^7 - x^7).

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0

Views

Author

Keywords

Comments

Differs for n >= 7 (1717 vs. 1716) from A000579(n+6) = binomial(n+6,6); see also row 6 of A027555, A059481 and A213808. - M. F. Hasler, Mar 05 2017

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), this sequence (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
    
  • SageMath
    def A049017_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^7 - x^7) ).list()
    A049017_list(40) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).

A084101 Expansion of (1+x)^2/((1-x)*(1+x^2)).

Original entry on oeis.org

1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums of A084099. Inverse binomial transform of A000749 (without leading zeros).
From Klaus Brockhaus, May 31 2010: (Start)
Periodic sequence: Repeat 1, 3, 3, 1.
Interleaving of A010684 and A176040.
Continued fraction expansion of (7 + 5*sqrt(29))/26.
Decimal expansion of 121/909.
a(n) = A143432(n+3) + 1 = 2*A021913(n+1) + 1 = 2*A133872(n+3) + 1.
a(n) = A165207(n+1) - 1.
First differences of A047538.
Binomial transform of A084102. (End)
From Wolfdieter Lang, Feb 09 2012: (Start)
a(n) = A045572(n+1) (Modd 5) := A203571(A045572(n+1)), n >= 0.
For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the five residue classes Modd 5, called [m] for m=0,1,...,4, are shown in the array A090298 if there the last row is taken as class [0] after inclusion of 0.
(End)

Examples

			From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 5 of nonnegative odd numbers restricted mod 5:
A045572: 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, ...
Modd 5:  1, 3, 3, 1,  1,  3,  3,  1,  1,  3, ...
(End)
		

Crossrefs

Cf. A084102.
Cf. A010684 (repeat 1, 3), A176040 (repeat 3, 1), A178593 (decimal expansion of (7+5*sqrt(29))/26), A143432 (expansion of (1+x^4)/((1-x)*(1+x^2))), A021913 (repeat 0, 0, 1, 1), A133872 (repeat 1, 1, 0, 0), A165207 (repeat 2, 2, 4, 4), A047538 (congruent to 0, 1, 4 or 7 mod 8), A084099 (expansion of (1+x)^2/(1+x^2)), A000749 (expansion of x^3/((1-x)^4-x^4)). - Klaus Brockhaus, May 31 2010

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x)^2/((1-x)*(1+x^2)) )); // G. C. Greubel, Feb 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^2/((1-x)(1+x^2)),{x,0,110}],x] (* or *) PadRight[{},110,{1,3,3,1}] (* Harvey P. Dale, Nov 21 2012 *)
  • PARI
    x='x+O('x^100); Vec((1+x)^2/((1-x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    ((1+x)^2/((1-x)*(1+x^2))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 28 2019

Formula

a(n) = binomial(3, n mod 4). - Paul Barry, May 25 2003
From Klaus Brockhaus, May 31 2010: (Start)
a(n) = a(n-4) for n > 3; a(0) = a(3) = 1, a(1) = a(2) = 3.
a(n) = (4 - (1+i)*i^n - (1-i)*(-i)^n)/2 where i = sqrt(-1). (End)
E.g.f.: 2*exp(x) + sin(x) - cos(x). - Arkadiusz Wesolowski, Nov 04 2017
a(n) = 2 - (-1)^(n*(n+1)/2). - Guenther Schrack, Feb 26 2019

A290995 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), this sequence (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^8;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290995 *)
  • PARI
    concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290995_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^7/((1-x)^8 - x^8) ).list()
    A290995_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) for n >= 9.
G.f.: x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)). - Colin Barker, Aug 22 2017
G.f.: x^7/((1-x)^8 - x^8). - G. C. Greubel, Apr 11 2023

A000750 Expansion of bracket function.

Original entry on oeis.org

1, -5, 15, -35, 70, -125, 200, -275, 275, 0, -1000, 3625, -9500, 21250, -42500, 76875, -124375, 171875, -171875, 0, 621875, -2250000, 5890625, -13171875, 26343750, -47656250, 77109375, -106562500, 106562500, 0
Offset: 0

Views

Author

Keywords

Comments

It appears that the (unsigned) sequence is identical to its 5th-order absolute difference. - John W. Layman, Sep 23 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* Jean-François Alcover, Feb 11 2016 *)
  • PARI
    Vec(1/((1+x)^5-x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016
    
  • PARI
    {a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ Seiichi Manyama, Mar 21 2019

Formula

G.f.: 1/((1+x)^5-x^5).
a(n) = (-1)^n * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+4,5*k+4). - Seiichi Manyama, Mar 21 2019

A038521 Number of elements of GF(2^n) with trace 1 and subtrace 1.

Original entry on oeis.org

0, 0, 2, 1, 4, 10, 12, 36, 64, 120, 272, 496, 1024, 2080, 4032, 8256, 16384, 32640, 65792, 130816, 262144, 524800, 1047552, 2098176, 4194304, 8386560, 16781312, 33550336, 67108864, 134225920, 268419072, 536887296, 1073741824, 2147450880, 4295032832, 8589869056
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0,2,1]; [m le 4 select I[m] else  2*Self(m-2) + 4*Self(m-3): m in [1..33]]; // Marius A. Burtea, Aug 02 2019
  • Maple
    A038521 := proc(n) local r,a,i ; if n mod 2 = 1 then r := 3 ; else r := 1 ; fi; a :=0 ; for i from r to n by 4 do a := a+binomial(n,i) ; od; a ; end: for n from 0 to 40 do printf("%d,",A038521(n)) ; od: # R. J. Mathar, Oct 20 2008
  • Mathematica
    LinearRecurrence[{0, 2, 4}, {0, 0, 2, 1}, 33] (* Jean-François Alcover, May 08 2023 *)
  • PARI
    concat([0, 0], Vec(x*(2 + x) / ((1 - 2*x)*(1 + 2*x + 2*x^2)) + O(x^35))) \\ Colin Barker, Aug 02 2019
    

Formula

a(n) = C(n, r+0) + C(n, r+4) + C(n, r+8) + ... where r = 3 if n odd, r = 1 if n even.
a(n) = (2^(n-1) - A108520(n-1))/2 if n > 0. - R. J. Mathar, Jan 29 2008
From Colin Barker, Aug 02 2019: (Start)
G.f.: x^2*(2 + x) / ((1 - 2*x)*(1 + 2*x + 2*x^2)).
a(n) = ((-1-i)^(n-2) + (-1+i)^(n-2) + 2^(n-1)) / 2 = 2*A176739(n-2) + A176739(n-3).
a(n) = 2*a(n-2) + 4*a(n-3) for n>3.
(End)

Extensions

Values duplicated A038520 and were replaced by R. J. Mathar, Oct 20 2008
Missing a(0) = 0 inserted by Andrey Zabolotskiy, Nov 12 2024

A192080 Expansion of 1/((1-x)^6 - x^6).

Original entry on oeis.org

1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
Offset: 0

Views

Author

Bruno Berselli, Jun 23 2011

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), this sequence (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(),m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))));
    
  • Mathematica
    CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x,0,50}], x] (* Vincenzo Librandi, Oct 15 2012 *)
    LinearRecurrence[{6,-15,20,-15,6},{1,6,21,56,126},30] (* Harvey P. Dale, Feb 22 2017 *)
  • Maxima
    makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
    
  • PARI
    Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
    
  • SageMath
    def A192080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^6-x^6) ).list()
    A192080_list(51) # G. C. Greubel, Apr 11 2023

Formula

a(n) = abs(A006090(n)) = (-1)^n * A006090(n).
G.f.: 1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)).
From G. C. Greubel, Apr 11 2023: (Start)
a(n) = (2^(n+5) + A010892(n) - 2*A010892(n-1) - 27*(A057083(n) - 2*A057083(n-1)))/6.
a(n) = (2^(n+5) + A057079(n+2) - 27*A057681(n+1))/6. (End)
Previous Showing 11-20 of 42 results. Next