A081139
9th binomial transform of (0,0,1,0,0,0,...).
Original entry on oeis.org
0, 0, 1, 27, 486, 7290, 98415, 1240029, 14880348, 172186884, 1937102445, 21308126895, 230127770466, 2447722649502, 25701087819771, 266895911974545, 2745215094595320, 28001193964872264, 283512088894331673
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8), this sequence (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
A017629
a(n) = 12*n + 9.
Original entry on oeis.org
9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
Offset: 0
-
a017629 = (+ 9) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
-
12*Range[0,200]+9 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
LinearRecurrence[{2,-1},{9,21},60] (* Harvey P. Dale, Apr 14 2019 *)
-
a(n)=12*n+9 \\ Charles R Greathouse IV, Jul 10 2016
-
[i+9 for i in range(525) if gcd(i,12) == 12] # Zerinvary Lajos, May 21 2009
A018913
a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761
Offset: 0
G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 12.
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=9, q=-1.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=11.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-1).
- Index entries for Pisot sequences
Cf.
A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((
A056918(n)^2 - 4)/77).
-
I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
-
CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
-
concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017
-
[lucas_number1(n,9,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
Original entry on oeis.org
1, 2, 12, 112, 1112, 11112, 111112, 1111112, 11111112, 111111112, 1111111112, 11111111112, 111111111112, 1111111111112, 11111111111112, 111111111111112, 1111111111111112, 11111111111111112, 111111111111111112, 1111111111111111112, 11111111111111111112, 111111111111111111112
Offset: 0
-
[(10^n + 8)/9: n in [0..40]]; // G. C. Greubel, Jan 11 2025
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=10*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
-
Join[{1}, Table[FromDigits[PadLeft[{2}, n, 1]], {n, 30}]] (* Harvey P. Dale, Apr 17 2013 *)
(10^Range[0, 29] + 8)/9 (* Alonso del Arte, Apr 12 2020 *)
-
a(n)=if(n==0,1,if(n==1,2,11*a(n-1)-10*a(n-2)))
for(i=0,10,print1(a(i),",")) \\ Lambert Klasen, Jan 28 2005
-
def A047855(n): return (pow(10,n) +8)//9
print([A047855(n) for n in range(41)]) # G. C. Greubel, Jan 11 2025
-
[gaussian_binomial(n,1,10)+1 for n in range(17)] # Zerinvary Lajos, May 29 2009
-
(List.fill(20)(10: BigInt)).scanLeft(1: BigInt)( * ).map(n => (n + 8)/9) // Alonso del Arte, Apr 12 2020
A016185
a(n) = 9^n - 8^n.
Original entry on oeis.org
0, 1, 17, 217, 2465, 26281, 269297, 2685817, 26269505, 253202761, 2413042577, 22791125017, 213710059745, 1992110014441, 18478745943857, 170706760005817, 1571545212141185, 14425381885981321, 132080236787517137, 1206736529597136217, 11004743954450081825
Offset: 0
A102518
a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=0..k} binomial(3k, 3j).
Original entry on oeis.org
1, 3, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363, 4052555153018976267, 36472996377170786403
Offset: 0
A084175
Jacobsthal oblong numbers.
Original entry on oeis.org
0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 11.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 6.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8).
-
List([0..30], n-> (2^(2*n+1) -(-2)^n -1)/9); # G. C. Greubel, Sep 21 2019
-
[(2*4^n-(-2)^n-1)/9: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
for n from 1 to 25 do print(round(2^n/3)*round(2^(n+1)/3)) od; # Gary Detlefs, Feb 10 2010
-
Table[(2*4^n -(-2)^n -1)/9, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011, modified by G. C. Greubel, Sep 21 2019 *)
LinearRecurrence[{3,6,-8}, {0,1,3}, 25] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=(2*4^n-(-2)^n-1)/9 \\ Charles R Greathouse IV, Sep 24 2015
-
def A084175(n): return ((m:=1<Chai Wah Wu, Apr 25 2025
-
[gaussian_binomial(n, 2, -2) for n in range(1, 26)] # Zerinvary Lajos, May 28 2009
A241010
Numbers n with the property that the number of parts in the symmetric representation of sigma(n) is odd, and that all parts have width 1.
Original entry on oeis.org
1, 2, 4, 8, 9, 16, 25, 32, 49, 50, 64, 81, 98, 121, 128, 169, 242, 256, 289, 338, 361, 484, 512, 529, 578, 625, 676, 722, 729, 841, 961, 1024, 1058, 1156, 1250, 1369, 1444, 1681, 1682, 1849, 1922, 2048, 2116, 2209, 2312, 2401, 2738, 2809, 2888, 3025, 3249, 3362, 3364, 3481, 3698, 3721, 3844
Offset: 1
This irregular triangle presents in each column those elements of the sequence that have the same factor of a power of 2.
row/col 2^0 2^1 2^2 2^3 2^4 2^5 ...
2^k: 1 2 4 8 16 32 ...
3^2: 9
5^2: 25 50
7^2: 49 98
3^4: 81
11^2: 121 242 484
13^2: 169 338 676
17^2: 289 578 1156 2312
19^2: 361 722 1444 2888
23^2: 529 1058 2116 4232
5^4: 625 1250
3^6: 729
29^2: 841 1682 3364 6728
31^2: 961 1922 3844 7688
37^2: 1369 2738 5476 10952 21904
41^2: 1681 3362 6724 13448 26896
43^2: 1849 3698 7396 14792 29584
47^2: 2209 4418 8836 17672 35344
7^4: 2401 4802
53^2: 2809 5618 11236 22472 44944
5^2*11^2: 3025
3^2*19^2: 3249
59^2: 3481 6962 13924 27848 55696
61^2: 3721 7442 14884 29768 59536
67^2: 4489 8978 17956 35912 71824 143648
3^2*23^2: 4761
71^2: 5041
...
5^2*101^2:225025 510050
...
Number 3025 = 5^2 * 11^2 is in the sequence since its divisors are 1, 5, 11, 25, 55, 121, 275, 605 and 3025. Number 6050 = 2^1 * 5^2 * 11^2 is not in the sequence since 2^2 * 5 > 11 while 5 < 11.
Number 510050 = 2^1 * 5^2 * 101^2 is in the sequence since its 9 odd divisors 1, 5, 25, 101, 505, 2525, 10201, 51005 and 225025 are separated by factors larger than 2^2. The areas of its 9 regions are 382539, 76515, 15339, 3939, 1515, 3939, 15339, 76515 and 382539. However, 2^2 * 5^2 * 101^2 is not in the sequence.
The first row is A000079.
The rows, except the first, are indexed by products of even powers of the odd primes satisfying the property, sorted in increasing order.
The first column is a subsequence of A244579.
A row labeled p^(2*h), h>=1 and p>=3 with p = A000040(n), has A098388(n) entries.
Starting with the second column, dividing the entries of a column by 2 creates a proper subsequence of the prior column.
See A259417 for references to other sequences of even powers of odd primes that are subsequences of column 1.
The first entry greater than 16 in column labeled 2^4 is 21904 since 37 is the first prime larger than 2^5. The rightmost entry in the row labeled 19^2 is 2888 in the column labeled 2^3 since 2^4 < 19 < 2^5.
Cf.
A000203,
A174905,
A236104,
A237270 (symmetric representation of sigma(n)),
A237271,
A237593,
A238443,
A241008,
A071562,
A246955,
A247687,
A250068,
A250070,
A250071.
-
(* path[n] and a237270[n] are defined in A237270 *)
atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
Select[Range[1000], atmostOneDiagonalsQ[#] && OddQ[Length[a237270[#]]]&] (* data *)
(* more efficient code based on numeric characterization *)
divisorPairsQ[m_, q_] := Module[{d = Divisors[q]}, Select[2^(m + 1)*Most[d] - Rest[d], # >= 0 &] == {}]
a241010AltQ[n_] := Module[{m, q, p, e}, m=IntegerExponent[n, 2]; q=n/2^m; {p, e} = Transpose[FactorInteger[q]]; q==1||(Select[e, EvenQ]==e && divisorPairsQ[m, q])]
a241010Alt[m_,n_] := Select[Range[m, n], a241010AltQ]
a241010Alt[1,4000] (* data *)
More terms and further edited by
Hartmut F. W. Hoft, Jun 26 2015 and Jul 02 2015 and corrected Oct 11 2015
A065999
Sum of digits of 9^n.
Original entry on oeis.org
1, 9, 9, 18, 18, 27, 18, 45, 27, 45, 45, 45, 54, 63, 72, 63, 63, 99, 81, 90, 90, 90, 90, 108, 117, 144, 117, 108, 90, 126, 99, 153, 144, 117, 153, 144, 162, 171, 153, 153, 153, 198, 162, 171, 198, 216, 171, 198, 198, 225, 153, 252, 216, 234, 207
Offset: 0
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- M. Sapir et al., The Decimal Expansions of Powers of 9: Problem 10758, Amer. Math. Monthly, 108 (Dec., 2001), 977-978.
- H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Periodica Math. Hungar., 3 (1971), 93-100.
- C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math., 319 (1980), 63-72.
Cf. sum of digits of k^n:
A001370 (k=2),
A004166 (k=3),
A065713 (k=4),
A066001 (k=5),
A066002 (k=6),
A066003(k=7),
A066004 (k=8), this sequence (k=9),
A066005 (k=11),
A066006 (k=12),
A175527 (k=13).
A035023
One ninth of 9-factorial numbers.
Original entry on oeis.org
1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1
-
[9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022
Comments