cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 117 results. Next

A008570 Digits of powers of 9.

Original entry on oeis.org

1, 9, 8, 1, 7, 2, 9, 6, 5, 6, 1, 5, 9, 0, 4, 9, 5, 3, 1, 4, 4, 1, 4, 7, 8, 2, 9, 6, 9, 4, 3, 0, 4, 6, 7, 2, 1, 3, 8, 7, 4, 2, 0, 4, 8, 9, 3, 4, 8, 6, 7, 8, 4, 4, 0, 1, 3, 1, 3, 8, 1, 0, 5, 9, 6, 0, 9, 2, 8, 2, 4, 2, 9, 5, 3, 6, 4, 8, 1, 2, 5, 4, 1, 8, 6, 5, 8, 2, 8, 3, 2, 9, 2, 2, 8, 7, 6, 7, 9
Offset: 0

Views

Author

Keywords

Comments

The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  9;
  8, 1;
  7, 2, 9;
  6, 5, 6, 1;
  5, 9, 0, 4, 9;
  5, 3, 1, 4, 4, 1;
  4, 7, 8, 2, 9, 6, 9;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[IntegerDigits/@(9^Range[0,20])] (* Harvey P. Dale, Nov 17 2024 *)

A096046 a(n) = B(2n,3)/B(2n) (see comment).

Original entry on oeis.org

1, 15, 141, 1275, 11481, 103335, 930021, 8370195, 75331761, 677985855, 6101872701, 54916854315, 494251688841, 4448265199575, 40034386796181, 360309481165635, 3242785330490721, 29185067974416495, 262665611769748461
Offset: 0

Views

Author

Benoit Cloitre, Jun 17 2004

Keywords

Comments

B(n,p) = Sum_{i=0..n} p^i*Sum_{j=0..i} binomial(n,j)*B(j) where B(k) = k-th Bernoulli number.

Crossrefs

Programs

  • Magma
    [(1/4)*(7*9^n-3): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Maxima
    A096046(n):=(1/4)*(7*9^n-3)$ makelist(A096046(n),n,0,30); /* Martin Ettl, Nov 13 2012 */
  • PARI
    a(n)=sum(i=0,2*n,3^i*sum(j=0,i,binomial(2*n,j)*bernfrac(j)))/bernfrac(2*n)
    

Formula

a(n) = (1/4)*(7*9^n - 3).
a(n) = 10*a(n-1) - 9*a(n-2); a(0)=1, a(1)=15.
a(n) = 9*a(n-1) + 6. First differences = 14*A001019(n). - Paul Curtz, Jul 07 2008

A096053 a(n) = (3*9^n - 1)/2.

Original entry on oeis.org

1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

Generalized NSW numbers. - Paul Barry, May 27 2005
Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005
Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.
Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

Crossrefs

Cf. A107903, A138894 ((5*9^n-1)/4).

Programs

Formula

From Paul Barry, May 27 2005: (Start)
G.f.: (1+3*x)/(1-10*x+9*x^2);
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;
a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)
a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.
a(n) = 10*a(n-1) - 9*a(n-2).
a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011
a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015
a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

Extensions

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

A223789 T(n,k)=Number of nXk 0..2 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 27, 46, 484, 729, 81, 86, 2116, 8635, 6561, 243, 148, 7396, 62365, 151580, 59049, 729, 239, 21904, 334230, 1560013, 2703137, 531441, 2187, 367, 57121, 1455816, 11012718, 39387861, 48302789, 4782969, 6561, 541, 134689, 5425943
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
.....3..........9............22..............46................86
.....9.........81...........484............2116..............7396
....27........729..........8635...........62365............334230
....81.......6561........151580.........1560013..........11012718
...243......59049.......2703137........39387861.........343454446
...729.....531441......48302789......1026135371.......11150023974
..2187....4782969.....862007289.....27088106846......377163884938
..6561...43046721...15379566078....715394830136....12972494260444
.19683..387420489..274427327200..18858304684055...446829906314726
.59049.3486784401.4896915028511.496722962933967.15355124632228358

Examples

			Some solutions for n=3 k=4
..2..2..2..1....1..2..0..0....1..1..2..2....1..2..1..1....0..0..0..0
..0..2..2..1....0..0..1..0....0..2..2..1....1..1..2..0....0..1..2..0
..2..1..0..0....0..1..0..0....0..2..0..0....2..2..2..2....0..0..1..0
		

Crossrefs

Column 1 is A000244
Column 2 is A001019
Row 1 is A223718
Row 2 is A223719

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: [order 15]
k=4: [order 80]
Empirical: rows n=1..5 are polynomials of order 4*n for k>0,0,1,8,15

A223975 T(n,k)=Number of nXk 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 27, 46, 484, 729, 81, 86, 2116, 9515, 6561, 243, 148, 7396, 76092, 186004, 59049, 729, 239, 21904, 440628, 2558848, 3628696, 531441, 2187, 367, 57121, 2026448, 22935921, 84988435, 70779056, 4782969, 6561, 541, 134689, 7829639
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Table starts
.....3..........9.............22...............46.................86
.....9.........81............484.............2116...............7396
....27........729...........9515............76092.............440628
....81.......6561.........186004..........2558848...........22935921
...243......59049........3628696.........84988435.........1140963027
...729.....531441.......70779056.......2809740785........55803232969
..2187....4782969.....1380511272......92756321858......2708281019793
..6561...43046721....26926081924....3060966419662....131014406127439
.19683..387420489...525177301935..100999995564503...6329626912147424
.59049.3486784401.10243271456697.3332485315028073.305632588672082728

Examples

			Some solutions for n=3 k=4
..0..2..0..0....1..2..2..1....2..1..1..0....1..2..2..0....0..0..0..0
..0..1..2..1....0..0..1..1....1..2..2..2....0..2..1..0....0..2..2..0
..0..1..2..2....0..1..0..0....0..1..1..2....1..1..0..0....0..2..1..1
		

Crossrefs

Column 1 is A000244
Column 2 is A001019
Row 1 is A223718
Row 2 is A223719

Formula

Empirical: columns k=1..6 have recurrences of order 1,1,7,18,43,91
Empirical: rows n=1..7 are polynomials of degree 4*n for k>0,0,0,0,2,3,4

A003665 a(n) = 2^(n-1)*( 2^n + (-1)^n ).

Original entry on oeis.org

1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of expansion of cosh(3*x), the aerated version of A001019, 1,0,9,0,81,0,729,... - Paul Barry, Apr 05 2003
Alternatively: start with the fraction 1/1, take the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top. The limit of the sequence of fractions used to generate this sequence is sqrt(9). - Cino Hilliard, Sep 25 2005
This sequence also gives the number of ordered pairs of subsets (A, B) of {1, 2, ..., n} such that |A u B| is even. (Here "u" stands for the set-theoretic union.) The special case n = 13 can be found as in CRUX Problem 3257. - Walther Janous (walther.janous(AT)tirol.com), Mar 01 2008
For n > 0, a(n) is term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 3,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010
a(n) = ((1+3)^n+(1-3)^n)/2. In general, if b(0),b(1),... is the k-th binomial transform of the sequence ((3^n+(-3)^n)/2), then b(n) = ((k+3)^n+(k-3)^n)/2. More generally, if b(0),b(1),... is the k-th binomial transform of the sequence ((m^n+(-m)^n)/2), then b(n) = ((k+m)^n+(k-m)^n)/2. See A034494, A081340-A081342, A034659. - Charlie Marion, Jun 25 2011
Pisano period lengths: 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 5, 1, 12, 6, 4, 1, 8, 1, 9, 4, ... - R. J. Mathar, Aug 10 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 9, 9, 9, ...). - Gary W. Adamson, Aug 06 2016

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
  • M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
  • Magma
    [2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x,0,30}], x] (* or *)
    LinearRecurrence[{2,8}, {1,1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=2^(n-1)*( 2^n + (-1)^n );
    
  • Sage
    [2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
    

Formula

From Paul Barry, Mar 01 2003: (Start)
a(n) = 2*a(n-1) + 8*a(n-2), a(0)=a(1)=1.
a(n) = (4^n + (-2)^n)/2.
G.f.: (1-x)/((1+2*x)*(1-4*x)). (End)
From Paul Barry, Apr 05 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*9^k.
E.g.f. exp(x)*cosh(3*x). (End)
a(n) = (A078008(n) + A001045(n+1))*2^(n-1) = A014551(n)*2^(n-1). - Paul Barry, Feb 12 2004
Given a(0)=1, b(0)=1 then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 9*b(i-1)) / (a(i-1) + b(i-1)). - Cino Hilliard, Sep 25 2005
a(n) = Sum_{k=0..n} A098158(n,k)*9^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = ((1+sqrt(9))^n + (1-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
If p[1]=1, and p[i]=9, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(9*k-1)/(x*(9*k+8) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A067403 Third column of triangle A067402.

Original entry on oeis.org

1, 5, 45, 405, 3645, 32805, 295245, 2657205, 23914845, 215233605, 1937102445, 17433922005, 156905298045, 1412147682405, 12709329141645, 114383962274805, 1029455660473245, 9265100944259205, 83385908498332845, 750473176484995605, 6754258588364960445, 60788327295284644005
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A002001 (second column), A067404 (fourth column), A001019 (powers of 9).
Cf. A067402.

Programs

  • Maple
    A067403:=n->5*9^(n-1): 1,seq(A067403(n), n=1..30); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Join[{1},NestList[9#&,5,30]] (* or *) CoefficientList[Series[ (1-4x)/ (1-9x),{x,0,30}],x] (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    Vec((1-4*x)/(1-9*x) + O(x^30)) \\ Michel Marcus, Apr 09 2017

Formula

a(n) = A067402(n+2, 2).
a(n) = 5*9^(n-1) for n>=1, a(0) = 1.
G.f.: (1-4*x)/(1-9*x).
E.g.f.: (4 + 5*exp(9*x))/9. - Stefano Spezia, Sep 30 2022

A075504 Stirling2 triangle with scaled diagonals (powers of 9).

Original entry on oeis.org

1, 9, 1, 81, 27, 1, 729, 567, 54, 1, 6561, 10935, 2025, 90, 1, 59049, 203391, 65610, 5265, 135, 1, 531441, 3720087, 1974861, 255150, 11340, 189, 1, 4782969, 67493007, 57041334, 11160261, 765450, 21546, 252, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(9*z) - 1)*x/9) - 1.
Row sums give A075508(n), n >= 1. The columns (without leading zeros) give A001019 (powers of 9), A076008-A076013 for m=1..7.

Examples

			[1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       9        1
*      81       27        1
*     729      567       54        1
*    6561    10935     2025       90      1
*   59049   203391    65610     5265    135     1
*  531441  3720087  1974861   255150  11340   189   1
* 4782969 67493007 57041334 11160261 765450 21546 252 1
(End)
		

Crossrefs

Columns 2-7 are A076008-A076013.

Programs

  • Mathematica
    Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (9^(n-m)) * stirling2(n, m).
a(n, m) = Sum_{p=0..m-1} (A075513(m, p)*((p+1)*9)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 9m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-9k*x), m >= 1.
E.g.f. for m-th column: (((exp(9x) - 1)/9)^m)/m!, m >= 1.

A100062 Denominator of the probability that an integer n occurs in the cumulative sums of the decimal digits of a random real number between 0 and 1.

Original entry on oeis.org

9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 31381059609, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121
Offset: 1

Views

Author

Eric W. Weisstein, Nov 01 2004

Keywords

Comments

Essentially the same as A001019 = powers of 9.
Also number of n-digit positive integers with no identical adjacent digits. Hence the numerator (with A052268 as denominator) of the probability that an n-digit positive integer has this property (e.g., 9/9, 81/90, 729/900, ..., where A100062(n)/A052268(n) reduces to A001019(n-1)/A011557(n-1)). - Rick L. Shepherd, Jun 08 2008

Examples

			1/9, 10/81, 100/729, 1000/6561, 10000/59049, ...
		

Crossrefs

Programs

Formula

a(n) = 9^n. - Max Alekseyev, Mar 03 2007
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 9*a(n-1), n>1; a(1)=9.
G.f.: 9x/(1-9x). (End)
a(n) = A001019(n) for n>0. - Wesley Ivan Hurt, Apr 18 2016

Extensions

More terms from Rick L. Shepherd, Jun 08 2008

A155988 a(n) = (2*n + 1)*9^n.

Original entry on oeis.org

1, 27, 405, 5103, 59049, 649539, 6908733, 71744535, 731794257, 7360989291, 73222472421, 721764371007, 7060738412025, 68630377364883, 663426981193869, 6382625094934119, 61149666232110753, 583701359488329915, 5553501505988967477, 52683216989246691471, 498464283821334080841
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 01 2009

Keywords

Crossrefs

Cf. A058962 for the similar (2n+1)4^n.

Programs

  • Magma
    [(2*n+1)*9^n: n in [0..20]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maxima
    makelist((2*n+1)*9^n, n, 0, 20); /* Martin Ettl, Nov 11 2012 */
  • PARI
    a(n)=(2*n+1)*9^n;
    

Formula

G.f.: (1 + 9*x)/(1 - 9*x)^2.
a(n) = 18*a(n-1) - 81*a(n-2) for n>=2.
Sum_{n>=0} 1/a(n) = (3/2)*log(2).
a(n) = A005408(n) * A001019(n).
a(n) = (2*n - 1)*3^(2*n-1)/3 = A060851(n)/3.
Sum_{n>=0} (-1)^n/a(n) = 3*arctan(1/3). - Amiram Eldar, Feb 26 2022
E.g.f.: exp(9*x)*(1 + 18*x). - Stefano Spezia, May 07 2023
Previous Showing 21-30 of 117 results. Next