cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A059381 Product J_2(i), i=1..n.

Original entry on oeis.org

1, 3, 24, 288, 6912, 165888, 7962624, 382205952, 27518828544, 1981355655168, 237762678620160, 22825217147535360, 3834636480785940480, 552187653233175429120, 106020029420769682391040, 20355845648787779019079680, 5862483546850880357494947840
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^2 for 1 <= i,j <= n. - Avi Peretz, (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Maple
    f:= n-> LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> igcd(i,j)^2)):
    map(f, [$1..40]); # Robert Israel, Dec 01 2017
  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n]; A059381[n_]:=Times@@(JordanTotient[#,2]&/@Range[n] ); (* Enrique Pérez Herrero, Dec 29 2010 *)

Formula

a(n) = A001088(n)*A175836(n). - Enrique Pérez Herrero, Oct 08 2011

A066780 a(n) = Product_{k=1..n} sigma(k); sigma(k) is the sum of the positive divisors of n.

Original entry on oeis.org

1, 3, 12, 84, 504, 6048, 48384, 725760, 9434880, 169827840, 2037934080, 57062154240, 798870159360, 19172883824640, 460149211791360, 14264625565532160, 256763260179578880, 10013767147003576320, 200275342940071526400, 8411564403483004108800
Offset: 1

Views

Author

Benoit Cloitre and Leroy Quet, Jan 18 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A007429(gcd(i,j)) for 1 <= i,j <= n. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(sigma(k),k=1..n), n=1..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=a[n-1]*sigma(n) od: seq(a[n], n=0..18); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066780[n_] := Product[DivisorSigma[1,i], {i,1,n}]; Array[A066780,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times,DivisorSigma[1,Range[20]]] (* Harvey P. Dale, Jan 29 2022 *)
  • PARI
    { p=1; for (n=1, 100, write("b066780.txt", n, " ", p*=sigma(n)) ) } \\ Harry J. Smith, Mar 25 2010

Formula

Lim_{n->infinity} (a(n)^(1/n)) / n = A345144 / exp(1) = 0.57447937538407152396420163967936309825692994713661226083669171312803511135... - Vaclav Kotesovec, Jun 09 2021

A059382 Product J_3(i), i=1..n.

Original entry on oeis.org

1, 7, 182, 10192, 1263808, 230013056, 78664465152, 35241680388096, 24739659632443392, 21474024560960864256, 28560452666077949460480, 41584019081809494414458880, 91318505903653649734151700480, 218616503133346837463559170949120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^3 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059382[n_]:=Times@@(JordanTotient[#, 3]&/@Range[n]); (* Enrique Pérez Herrero, Aug 06 2011 *)

A231716 Numbers with restricted residue set factorial base representation: numbers n which can be formed as a sum n = du*u! + ... + d2*2! + d1*1!, where each di is in range 1..i and gcd(di,i+1)=1.

Original entry on oeis.org

1, 3, 5, 9, 11, 21, 23, 33, 35, 45, 47, 57, 59, 69, 71, 81, 83, 93, 95, 105, 107, 117, 119, 153, 155, 165, 167, 177, 179, 189, 191, 201, 203, 213, 215, 225, 227, 237, 239, 633, 635, 645, 647, 657, 659, 669, 671, 681, 683, 693, 695, 705, 707, 717, 719, 873, 875
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2013

Keywords

Comments

A001088(n+1) gives the number of terms x in sequence for which A084558(x)=n.
Because totatives (the reduced residue set) of each natural number k form a multiplicative group of integers modulo same k, it means that taking e.g. inverses of each digit modulo same k or multiplying them (again modulo k) by some member of that set keeps the set closed, and thus applying these operations to each digit modulo i+1 (2 for the least significant digit in factorial base, 3 for the next, and so on) yield only digits allowed in this sequence, and thus they induce various permutations of this sequence. These can be further "normalized" to be permutations of natural numbers with a suitable ranking function, which is to be submitted later.

Examples

			This can be viewed as an irregular table, where row n has A001088(n+1) elements, starts from position A231721(n) and ends at position A231722(n+1):
1;
3, 5;
9, 11, 21, 23;
33, 35, 45, 47, 57, 59, 69, 71, 81, 83, 93, 95, 105, 107, 117, 119;
...
		

Crossrefs

Positions of ones in A231715.
The first term of each row: A007489(n) = a(A231721(n)).
The last term of each row: A033312(n+1) = a(A231722(n+1)).
Subset of A227157.

A059383 Product J_4(i), i=1..n.

Original entry on oeis.org

1, 15, 1200, 288000, 179712000, 215654400000, 517570560000000, 1987470950400000000, 12878811758592000000000, 120545678060421120000000000, 1764788726804565196800000000000, 33883943554647651778560000000000000, 967725427920736934795673600000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^4 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059383[n_]:=Times@@(JordanTotient[#, 4]&/@Range[n]); (* Enrique Pérez Herrero, Aug 12 2011 *)

A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).

Original entry on oeis.org

1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.

Crossrefs

Programs

Formula

For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2023

A059384 a(n) = Product_{i=1..n} J_5(i).

Original entry on oeis.org

1, 31, 7502, 7441984, 23248758016, 174412182636032, 2931171141381153792, 93047096712003345973248, 5471727569246068763302821888, 529903984716066283313298482921472, 85341036738522474927606720674503065600, 20487310643596659421020979792003903940198400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^5 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_Integer, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &];  f[n_] := Times @@ (JordanTotient[#, 5] & /@ Range[n]); (* Enrique Pérez Herrero *)  Array[f, 11] (* Robert G. Wilson v, Oct 08 2011 *)

A060841 Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 4, 18, 144, 900, 16200, 132300, 2116800, 28576800, 714420000, 8644482000, 311201352000, 4382752374000, 143169910884000, 4026653743612500, 128852919795600000, 2327405863808025000, 125679916645633350000
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), May 02 2001

Keywords

Comments

The value of 1/det(M) is not always an integer! For example, 1/det(35) = 5029296746186844716050163189085401314000634765625/2. - Harry J. Smith, Jul 13 2009
Conjecture: 1/det(M) is an integer only for n: 1 - 34, 36 and 38. All denominators are powers of two (A000079). But not all powers of two are present. See A260502. - Robert G. Wilson v, Aug 02 2015
Values of n at which a(n) = a(n+1): 63, 127, 255, ..., . - Robert G. Wilson v, Aug 03 2015

Examples

			a(2) = 4 because the matrix M is [1,1/2; 1/2,1/2] and det(M) = 1/4.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := Denominator[ Det[ Table[ GCD[1/i, 1/j], {i, n}, {j, n}]]; Array[d, 18]] (* Robert G. Wilson v, Aug 02 2015 *)
  • PARI
    vector(20, n, numerator(1/matdet(matrix(n, n, i, j, 1/lcm(i,j))))) \\ Michel Marcus, Aug 03 2015

Formula

a(n) = (n!)^2 / (phi(1)*phi(2)*...*phi(n)) = (n!)^2 / A001088(n).

Extensions

More terms from Reiner Martin, May 17 2001

A060239 a(n) = determinant(P*Q)/n! where P, Q are n X n matrices with P[i,j]=lcm(i,j), Q[i,j]=gcd(i,j).

Original entry on oeis.org

1, -1, 4, -8, 128, 512, -18432, 73728, -884736, -14155776, 1415577600, 11324620800, -1630745395200, -58706834227200, -3757237390540800, 30057899124326400, -7694822175827558400, -92337866109930700800
Offset: 1

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

Crossrefs

Programs

  • Sage
    def A060239(n):
        P = Matrix(lambda i,j: lcm(i+1,j+1), nrows=n)
        Q = Matrix(lambda i,j: gcd(i+1,j+1), nrows=n)
        return (P*Q).det()/factorial(n) # D. S. McNeil, Jan 16 2011

Formula

a(n) = A001088(n)*A060238(n)/n!.

A245798 Catalan number analogs for totienomial coefficients (A238453).

Original entry on oeis.org

1, 1, 2, 4, 12, 36, 120, 360, 960, 3840, 13824, 41472, 152064, 506880, 2280960, 7983360, 29937600, 99792000, 266112000, 1197504000, 4790016000, 19160064000, 73156608000, 219469824000, 1009561190400, 3533464166400, 12563428147200, 54441521971200, 155547205632000
Offset: 0

Views

Author

Tom Edgar, Aug 22 2014

Keywords

Comments

One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Euler's totient function (A000010).
When the INTEGERS (2014) paper was written it was not known that this was an integral sequence (see the final paragraph of that paper). However, it is now known to be integral.
Another name could be phi-Catalan numbers. - Tom Edgar, Mar 29 2015

Examples

			We see that A238453(10,5) = 72 and A000010(5+1) = 2, so a(5) = (1/2)*72 = 36.
		

Crossrefs

Programs

  • Sage
    [(1/euler_phi(n+1))*prod(euler_phi(i) for i in [1..2*n])/prod(euler_phi(i) for i in [1..n])^2 for n in [0..100]]

Formula

a(n) = A238453(2*n,n) / A000010(n+1).
Previous Showing 11-20 of 33 results. Next