cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A219233 Alternating row sums of Riordan triangle A110162.

Original entry on oeis.org

1, -3, 7, -18, 47, -123, 322, -843, 2207, -5778, 15127, -39603, 103682, -271443, 710647, -1860498, 4870847, -12752043, 33385282, -87403803, 228826127, -599074578, 1568397607, -4106118243, 10749957122, -28143753123, 73681302247, -192900153618, 505019158607
Offset: 0

Views

Author

Wolfdieter Lang, Nov 16 2012

Keywords

Comments

If a(0) is put to 2 instead of 1 this becomes a(n) = (-1)^n*A005248(n), n >= 0. These are then the alternating row sums of triangle A127677.
Also abs(a(n)) is the number of rounded area of pentagon or pentagram in series arrangement. - Kival Ngaokrajang, Mar 27 2013

Crossrefs

Programs

  • Magma
    A219233:= func< n | n eq 0 select 1 else (-1)^n*Lucas(2*n) >; // G. C. Greubel, Jun 13 2025
    
  • Mathematica
    A219233[n_]:= (-1)^n*LucasL[2*n] - Boole[n==0]; (* G. C. Greubel, Jun 13 2025 *)
  • PARI
    Vec((1-x^2)/(1+3*x+x^2) + O(x^40)) \\ Colin Barker, Oct 14 2015
    
  • SageMath
    def A219233(n): return (-1)**n*lucas_number2(2*n,1,-1) - int(n==0) # G. C. Greubel, Jun 13 2025

Formula

a(0) = 1 and a(n) = (-1)^n*(F(2*(n+1)) - F(2*(n-1))) = (-1)^n*L(2*n), n>=1, with F=A000045 (Fibonacci) and L=A000032 (Lucas).
O.g.f.: (1-x^2)/(1+3*x+x^2).
G.f.: (W(0) -6)/(5*x) -1 , where W(k) = 5*x*k + x + 6 - 6*x*(5*k-9)/W(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
From Colin Barker, Oct 14 2015: (Start)
a(n) = -3*a(n-1) - a(n-2) for n>2.
a(n) = (1/2*(-3-sqrt(5)))^n + (1/2*(-3+sqrt(5)))^n for n>0. (End)
E.g.f.: 2*exp(-3*x/2)*cosh(sqrt(5)*x/2) - 1. - Stefano Spezia, Dec 26 2021
From G. C. Greubel, Jun 13 2025: (Start)
a(-n) = a(n).
a(n) = (-1)^n*A001254(n) - 2 - [n=0] = A075150(n) - 2 - [n=0]. (End)

A075150 a(n) = L(n)*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (see comment to A061084).

Original entry on oeis.org

4, -1, 9, -16, 49, -121, 324, -841, 2209, -5776, 15129, -39601, 103684, -271441, 710649, -1860496, 4870849, -12752041, 33385284, -87403801, 228826129, -599074576, 1568397609, -4106118241, 10749957124, -28143753121, 73681302249, -192900153616, 505019158609, -1322157322201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002

Keywords

Crossrefs

Programs

  • Magma
    A075150:= func< n | (-1)^n*Lucas(n)^2 >; // G. C. Greubel, Jun 14 2025
    
  • Mathematica
    CoefficientList[Series[(4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 30}], x]
    LinearRecurrence[{-2,2,1},{4,-1,9},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2+(1/2*(-3-sqrt(5)))^n+(1/2*(-3+sqrt(5)))^n)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((4+7*x-x^2)/(1+2*x-2*x^2-x^3) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    def A075150(n): return (-1)**n*lucas_number2(n,1,-1)**2 # G. C. Greubel, Jun 14 2025

Formula

a(n) = (-1)^n*A000032(2*n) + 2.
a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) with a(0)=4, a(1)=-1, a(2)=9.
G.f.: (4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3).
a(n) = (-1)^n*A001254(n). - R. J. Mathar, Jan 11 2012
a(n) = 2 + (1/2*(-3-sqrt(5)))^n + (1/2*(-3+sqrt(5)))^n. - Colin Barker, Oct 01 2016
From G. C. Greubel, Jun 14 2025: (Start)
a(n) = A000032(n)*A000032(-n) = (-1)^n*A000032(n)^2.
a(n) = A219233(n) + 2 + [n=0].
E.g.f.: 2*exp(-3*x/2)*cosh(sqrt(5)*x/2) + 2*exp(x). (End)

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

Original entry on oeis.org

1, 2, 0, 7, 2, 9, 1, 9, 9, 6, 9, 8, 5, 7, 4, 7, 0, 7, 4, 4, 1, 7, 2, 0, 4, 1, 8, 4, 2, 5, 7, 6, 9, 9, 9, 4, 5, 3, 0, 6, 9, 2, 1, 4, 5, 4, 0, 1, 9, 0, 3, 6, 3, 7, 6, 9, 5, 1, 3, 1, 1, 5, 9, 4, 2, 2, 1, 2, 2, 4, 0, 0, 1, 5, 4, 0, 7, 0, 3, 5, 7, 7, 6, 1, 6, 7, 7, 6, 5, 5, 9, 7, 8, 6, 8, 8, 9, 9, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			1.207291996985747074417204...
		

References

  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.

Crossrefs

Cf. A000032, A001254 (squares of Lucas numbers).

Programs

  • Mathematica
    f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)

Formula

Equals Sum_{n >= 1} 1/L(n)^2.
Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - Peter Bala, Nov 13 2019
Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - Amiram Eldar, Jan 27 2022

A005970 Partial sums of squares of Lucas numbers.

Original entry on oeis.org

1, 10, 26, 75, 196, 520, 1361, 3570, 9346, 24475, 64076, 167760, 439201, 1149850, 3010346, 7881195, 20633236, 54018520, 141422321, 370248450, 969323026, 2537720635, 6643838876, 17393796000, 45537549121, 119218851370
Offset: 1

Views

Author

Keywords

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    lucas := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(3) fi: lucas(n-1)+lucas(n-2) end: l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+lucas(i)^2; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
  • Mathematica
    Accumulate[LucasL[Range[30]]^2] (* Harvey P. Dale, Dec 06 2019 *)

Formula

a(n) - a(n-1) = A001254(n).
G.f.: (1+7*x-4*x^2)/((1-x)*(1+x)*(1-3*x+x^2)). - Simon Plouffe in his 1992 dissertation
From Amiram Eldar, Jan 13 2022: (Start)
a(n) = Sum_{k=1..n} L(k)^2, where L(k) is the k-th Lucas number (A000032).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4), for n > 4.
a(n) = L(n)*L(n+1) - 2 = A215602(n) - 2. (End)

Extensions

More terms from James Sellers, May 29 2000
Definition clarified by Harvey P. Dale, Dec 06 2019

A075151 a(n)=L(n)^2*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (comment to A061084).

Original entry on oeis.org

8, -1, 27, -64, 343, -1331, 5832, -24389, 103823, -438976, 1860867, -7880599, 33386248, -141420761, 599077107, -2537716544, 10749963743, -45537538411, 192900170952, -817138135549, 3461452853383, -14662949322176, 62113250509227, -263115950765039, 1114577054530568
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [((-1)^n*Lucas(n))^3: n in [0..30]]; // Vincenzo Librandi, Apr 22 2018
  • Mathematica
    CoefficientList[Series[(8+23*x-24*x^2-x^3)/(1+3*x-6*x^2-3*x^3+x^4), {x, 0, 25}], x]
    LinearRecurrence[{-3,6,3,-1},{8,-1,27,-64},30] (* Harvey P. Dale, Apr 06 2013 *)
    Table[LucasL[-n]^3, {n, 0, 25}] (* Vincenzo Librandi, Apr 22 2018 *)

Formula

a(n) = 3*L(n)+(-1)^n*L(3n).
a(n) = -3a(n-1)+6a(n-2)+3a(n-3)-a(n-4), n>3.
G.f.: ( 8+23*x-24*x^2-x^3 ) / ( (x^2+x-1)*(x^2-4*x-1) ).
a(n) is asymptotic to (-phi)^(3n) where phi is the golden ratio (1+sqrt(5))/2. - Benoit Cloitre, Sep 07 2002
a(n) = ((-1)^n*L(n))^3 = L(-n)^3. - Ehren Metcalfe, Apr 21 2018

A106789 Sum of two consecutive squares of Lucas 3-step numbers (A001644).

Original entry on oeis.org

10, 10, 58, 170, 562, 1962, 6562, 22202, 75242, 254330, 860474, 2911226, 9848050, 33316090, 112707970, 381286954, 1289885834, 4363653034, 14762129274, 49939929610, 168945571442, 571538767370, 1933501811618, 6540989771354
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). Sum of two consecutive squares of Lucas 3-step numbers can be expressed in terms of tribonacci numbers, but not quite as neatly, as derived from the identity A001644(n) = T(n) + 2*T(n-1) + 3*T(n-2) = 3*T(n+1) - 2*T(n) - T(n-1) where the tribonacci numbers T(n) = A000073(n).

Examples

			a(0) = A001644(0)^2 + A001644(1)^2 = 3^2 + 1^2 = 9 + 1 = 10.
a(1) = A001644(1)^2 + A001644(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A001644(2)^2 + A001644(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A001644(3)^2 + A001644(4)^2 = 7^2 + 11^2 = 49 + 121 = 170 = 13^2 + 1.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2 -6*x^3+x^4+x^6), {x,0,40}], x] (* G. C. Greubel, Apr 21 2019 *)
    Total/@Partition[LinearRecurrence[{1,1,1},{3,1,3},40]^2,2,1] (* Harvey P. Dale, Apr 03 2022 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A001644(n)^2 + A001644(n+1)^2.
G.f.: 2*(5 - 5*x + 4*x^2 - 18*x^3 - x^4 - 5*x^5)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)).

A201207 Half-convolution of sequence A000032 (Lucas) with itself.

Original entry on oeis.org

4, 2, 7, 11, 27, 41, 84, 137, 270, 435, 826, 1338, 2488, 4024, 7353, 11899, 21461, 34723, 61960, 100255, 177344, 286947, 503892, 815316, 1422892, 2302286, 3996619, 6466667, 11173935, 18079805, 31114236
Offset: 0

Views

Author

Wolfdieter Lang, Jan 03 2012

Keywords

Comments

For the definition of the half-convolution of a sequence with itself see a comment on A201204. There the rule for the o.g.f. is given. Here the o.g.f. is (L(x)^2 + L2(x^2))/2, with the o.g.f. L(x)=(2-x)/(1-x-x^2) of A000032, and L2(x) = (4-7*x-x^2)/((1+x)*(1-3*x+x^2)) the o.g.f. of A001254. This leads to the o.g.f given in the formula section.
For the bisection of this sequence see A203570 and A203574.

Crossrefs

Formula

a(n) = Sum_{k=0..floor(n/2)} L(k)*L(n-k), n >= 0, with the Lucas numbers L(n)=A000032(n).
O.g.f.: (4-2*x-7*x^2+6*x^3-x^4+3*x^5)/((1-3*x^2+x^4)*(1+x^2)*(1-x-x^2)). See a comment above.
a(n) = (1/4)*(2*(2*n+5+(-1)^n)*F(n+1)-(2*n+3+(-1)^n)*F(n)) +(i^n+(-i)^n)/2, n >= 0, with the Fibonacci numbers F(n)=A000045(n) and the imaginary unit i=sqrt(-1). From the partial fraction decomposition of the o.g.f. and the Fibonacci recurrence.

A339669 Number of Fibonacci divisors of Lucas(n)^2 + 1.

Original entry on oeis.org

2, 2, 3, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 2, 5, 1, 5, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 7, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6, 2, 5, 2, 7, 1, 6, 2, 4, 2, 8, 1, 9, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 9, 2, 6, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6
Offset: 0

Views

Author

Michel Lagneau, Dec 12 2020

Keywords

Comments

Particular attention must be paid to the regularity properties of the number of divisors of Lucas(n)^2 + 1 observed for n < 156, when a(n) = 1 or 2. From this observation, we propose two conjectures verified for n < 156.
Conjecture 1: a(6*n+3) = 1.
Conjecture 2: a(6*n+1) = a(6*n+5) = 2.
The table in the links shows an array where terms are arranged in a table of 12 columns and 13 rows. We see the periods when a(n) = 1 and 2.

Examples

			a(8) = 5 because the divisors of Lucas(8)^2 + 1 = 47^2 + 1 = 2210 are {1, 2, 5, 10, 13, 17, 26, 34, 65, 85, 130, 170, 221, 442, 1105, 2210} with 5 Fibonacci divisors: 1, 2, 5, 13 and 34.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):nn:=100:F:={}:
    Lucas:=n->2*fibonacci(n-1)+fibonacci(n):
    for k from 0 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for m from 0 to 90 do:
        l:=Lucas(m)^2+1:d:=numtheory[divisors](l):n0:=nops(d):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[LucasL[#]^2 + 1, 1 &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 89, 0] (* Michael De Vlieger, Dec 12 2020 *)
  • PARI
    a(n) = { my(l2 = 5*fibonacci(n)^2 + 4*(-1)^n + 1, k = 1, m = 2, res = 1, g); while(m <= l2, if(l2 % m == 0, res++); g = m; m += k; k = g; ); res } \\ David A. Corneth, Dec 12 2020

A105941 Powers of Lucas numbers.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 11, 16, 18, 27, 29, 32, 47, 49, 64, 76, 81, 121, 123, 128, 199, 243, 256, 322, 324, 343, 512, 521, 729, 841, 843, 1024, 1331, 1364, 2048, 2187, 2207, 2209, 2401, 3571, 4096, 5776, 5778, 5832, 6561, 8192, 9349, 14641, 15127, 15129, 16384
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2005

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 56.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.

Crossrefs

A000032 Lucas numbers. A001254 Squares of Lucas numbers. A075155 Cubes of Lucas numbers. A099923 Fourth powers of Lucas numbers. A103325 Fifth powers of Lucas numbers. A103324 Square array T(n, k) read by antidiagonals: powers of Lucas numbers. A105317 Powers of Fibonacci numbers.

Programs

  • Mathematica
    lim = 10^5; t = Table[f = LucasL[n]; If[f == 1, {1}, f^Range[Floor[Log[lim]/Log[f]]]], {n, 0, Floor[Log[GoldenRatio, lim]]}]; Union[Flatten[t]] (* T. D. Noe, Sep 27 2011 *)

Formula

{a(n)} = {A000204} U {A001254} U {A075155} U {A099923} U {A103325}... L(n)^2 = L(2n) + 2(-1)^n = L(n-1)*L(n+1) + 5(-1)^n. L(n)^3 = L(3n) + 3(-1)^n*L(n). L(n)^4 = L(4n) + 4(-1)^n*L(2n) + 6. L(n)^5 = L(5n) + 5(-1)^n*L(3n) + 10L(n).

Extensions

Corrected by T. D. Noe, Sep 26 2011

A106791 Sum of two consecutive squares of Lucas 4-step numbers (A073817).

Original entry on oeis.org

17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953, 2364489, 8785386, 32637202, 121265666, 450571589, 1674090725, 6220049810, 23110593298, 85867345570, 319039636721, 1185390110881, 4404311472106, 16364198176874
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). A106789 is sum of two consecutive squares of Lucas 3-step numbers (A001644). Sum of two consecutive squares of Lucas 4-step numbers can be expressed in terms of tetranacci numbers, but not quite as neatly.

Examples

			a(0) = A073817(0)^2 + A073817(1)^2 = 4^2 + 1^2 = 16 + 1 = 17.
a(1) = A073817(1)^2 + A073817(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A073817(2)^2 + A073817(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A073817(3)^2 + A073817(4)^2 = 7^2 + 15^2 = 49 + 225 = 274.
a(4) = A073817(4)^2 + A073817(5)^2 = 15^2 + 26^2 = 225 + 676 = 901 = 30^2 + 1.
a(5) = A073817(5)^2 + A073817(6)^2 = 26^2 + 51^2 = 676 + 2601 = 3277.
		

Crossrefs

Programs

  • GAP
    a:=[17,10,58,274,901,3277,12402, 46282,171170,635953];; for n in [11..40] do a[n]:=2*a[n-1]+4*a[n-2]+6*a[n-3]+12*a[n-4]-4*a[n-5] -6*a[n-6]-2*a[n-8]+a[n-10]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2 -6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{2,4,6,12,-4,-6,0,-2,0,1}, {17,10,58,274,901,3277,12402, 46282,171170,635953}, 40] (* G. C. Greubel, Apr 23 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+ 17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

a(n) = A073817(n)^2 + A073817(n+1)^2.
a(n) = 5*A073817(n)^2 + 4*A073817(n)*A073817(n-4) + A073817(n-4)^2.
G.f.: (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5+46*x^6-32*x^7+2*x^8+17*x^9)/( (1- 3*x-3*x^2+x^3+x^4)*(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6)). - Colin Barker, Dec 17 2012
Previous Showing 11-20 of 27 results. Next