cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 163 results. Next

A060117 A list of all finite permutations in "PermUnrank3R" ordering. (Inverses of the permutations of A060118.)

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 4, 2, 1, 3, 2, 4, 1, 3, 1, 4, 3, 2, 4, 1, 3, 2, 1, 3, 4, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 2, 4, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 1, 2, 3, 4, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Comments

PermUnrank3R and PermUnrank3L are slight modifications of unrank2 algorithm presented in Myrvold-Ruskey article.

Examples

			In this table each row consists of A001563[n] permutations of (n+1) terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 3,2,1; 2,3,1/ 1,2,4,3; 2,1,4,3;
Append to each an infinite number of fixed terms and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
		

Crossrefs

A060119 = Positions of these permutations in the "canonical list" A055089 (where also the rest of procedures can be found). A060118 gives position of the inverse permutation of each and A065183 positions after Foata transform.
Inversion vectors: A064039.

Programs

  • Maple
    with(group); permul := (a,b) -> mulperms(b,a); PermUnrank3R := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Raux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end; PermUnrank3Raux := proc(n,r,p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Raux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;

Formula

[seq(op(PermUnrank3R(j)), j=0..)]; (Maple code given below)

A091725 Decimal expansion of second exponential integral at 1, ExpIntegralEi[1].

Original entry on oeis.org

1, 8, 9, 5, 1, 1, 7, 8, 1, 6, 3, 5, 5, 9, 3, 6, 7, 5, 5, 4, 6, 6, 5, 2, 0, 9, 3, 4, 3, 3, 1, 6, 3, 4, 2, 6, 9, 0, 1, 7, 0, 6, 0, 5, 8, 1, 7, 3, 2, 7, 0, 7, 5, 9, 1, 6, 4, 6, 2, 2, 8, 4, 3, 1, 8, 8, 2, 5, 1, 3, 8, 3, 4, 5, 3, 3, 8, 0, 4, 1, 5, 3, 5, 4, 8, 9, 0, 0, 7, 1, 0, 1, 2, 6, 1, 3, 8, 9, 5, 6, 9, 7, 1, 8, 1
Offset: 1

Views

Author

Eric W. Weisstein, Feb 01 2004

Keywords

Examples

			1.89511781635593675546652...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, table 37:7:1 at page 355.

Crossrefs

Programs

Formula

Equals li(e), where li(x) is the logarithmic integral, and gamma + Sum_{n>=1} 1/(n*n!) = A001620 + A229837. - Amiram Eldar, Mar 05 2019

A030298 List of permutations of 1,2,3,...,n for n=1,2,3,..., in lexicographic order.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1, 1, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 4, 1, 3, 4, 2, 1, 4, 2, 3, 1, 4, 3, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 1, 3, 2, 4, 3, 1, 3, 1, 2, 4, 3, 1, 4, 2, 3, 2, 1, 4, 3, 2, 4, 1, 3, 4, 1, 2, 3, 4, 2, 1, 4, 1, 2, 3, 4, 1, 3, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

Contains every finite sequence of distinct numbers, infinitely many times.

Examples

			The permutations can be written as
  1,
  12, 21,
  123, 132, 213, 231, 312, 321, etc.
Write them in order and insert commas.
		

Crossrefs

A030299 gives the initial portion of these same permutations as decimally encoded numbers.
Cf. A001563 (row lengths), A001286 (row sums).
Cf. A030496 for another ordering.
The same information is essentially given in A055089, but in more compact way, by skipping those permutations which start with a fixed element (cf. A220696).
A220660(n) tells the zero-based rank r of the n-th permutation in this sequence, among all finite permutations of the same size.
A220663(n) tells the zero-based position (from the left) of that a(n) in that permutation of rank r.
A084557(n) tells that the n-th term a(n) belongs to the a(n):th lexicographically ordered permutation from the start (its "global rank").
A220660(A084557(n)) tells the "local rank" of the permutation (amongst the permutations of the same size) to which the n-th term a(n) belongs.
(A130664(n),A084555(n)) = (1,1),(2,3),(4,5),(6,8),(9,11),(12,14),... gives the starting and ending offsets of the n-th permutation in this list.

Programs

  • Haskell
    import Data.List (permutations, sort)
    a030298 n k = a030298_tabf !! (n-1) (k-1)
    a030298_row = concat . sort . permutations . enumFromTo 1
    a030298_tabf = map a030298_row [1..]
    -- Reinhard Zumkeller, Mar 29 2012
    (MIT/GNU Scheme, with Antti Karttunen's intseq-library):
    ;; Note that in Scheme, vector indexing is zero-based.
    ;; Requires also A055089permvec from A055089.
    (define (A030298 n) (vector-ref (A030298permvec (A084556 (A084557 n)) (A220660 (A084557 n))) (A220663 n)))
    (define (A030298permvec size rank) (vector-reverse (vector1invert (A055089permvec size rank))))
    (define (vector1invert vec) (make-initialized-vector (vector-length vec) (lambda (i) (1+ (- (vector-length vec) (vector-ref vec i))))))
    (define (vector-reverse vec) (make-initialized-vector (vector-length vec) (lambda (i) (vector-ref vec (- (vector-length vec) i 1)))))
    
  • Mathematica
    f[n_] := Permutations[Range@ n, {n}]; Array[f, 4] // Flatten (* Robert G. Wilson v, Dec 18 2012 *)
  • Python
    from itertools import permutations, count, chain, islice
    def A030298_gen(): # generator of terms
        return chain.from_iterable(p for l in count(2) for p in permutations(range(1,l)))
    A030298_list = list(islice(A030298_gen(),30)) # Chai Wah Wu, Mar 21 2022

Formula

Start with 1, then 12 and 21, then the 6 permutations of 123 in lexical order: 123, 132, 213, 231, 312, 321 and so on.

Extensions

Entry revised by N. J. A. Sloane, Feb 02 2006
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012

A060118 A list of all finite permutations in "PermUnrank3L" ordering. (Inverses of the permutations of A060117.)

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 2, 4, 3, 2, 1, 4, 3, 1, 3, 4, 2, 2, 3, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 1, 4, 3, 2, 2, 4, 3, 1, 1, 4, 2, 3, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 4, 3, 2, 1, 4, 3, 1, 2, 4, 2, 1, 3, 4, 1, 2, 3, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 2, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Comments

In contrast to PermUnrank3R (A060117), PermUnrank3L applies each successive transposition from the left, not from the right, thus producing the inverse (permutation) of what PermUnrank3R would produce.

Examples

			In this table each row consists of A001563[n] permutations of (n+1) terms;
Append to each an infinite number of fixed terms and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
		

Crossrefs

A060120 = Positions of these permutations in the "canonical list" A055089. Cf. also A060117.

Programs

  • Maple
    with(group); permul := (a,b) -> mulperms(b,a); PermUnrank3L := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Laux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end; PermUnrank3Laux := proc(n,r,p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Laux(n-1, r-(s*((n-1)!)), permul([[n,n-s]],p))); fi; end;

Formula

[seq(op(PermUnrank3L(j)), j=0..)]; (Maple code given below)

A099563 a(0) = 0; for n > 0, a(n) = final nonzero number in the sequence n, f(n,2), f(f(n,2),3), f(f(f(n,2),3),4),..., where f(n,d) = floor(n/d); the most significant digit in the factorial base representation of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

John W. Layman, Oct 22 2004

Keywords

Comments

Records in {a(n)} occur at {1,4,18,96,600,4320,35280,322560,3265920,...}, which appears to be n*n! = A001563(n).
The most significant digit in the factorial expansion of n (A007623). Proof: The algorithm that computes the factorial expansion of n, generates the successive digits by repeatedly dividing the previous quotient with successively larger divisors (the remainders give the digits), starting from n itself and divisor 2. As a corollary we find that A001563 indeed gives the positions of the records. - Antti Karttunen, Jan 01 2007.

Examples

			For n=15, f(15,2) = floor(15/2)=7, f(7,3)=2, f(2,4)=0, so a(15)=2.
From _Antti Karttunen_, Dec 24 2015: (Start)
Example illustrating the role of this sequence in factorial base representation:
   n  A007623(n)       a(n) [= the most significant digit].
   0 =   0               0
   1 =   1               1
   2 =  10               1
   3 =  11               1
   4 =  20               2
   5 =  21               2
   6 = 100               1
   7 = 101               1
   8 = 110               1
   9 = 111               1
  10 = 120               1
  11 = 121               1
  12 = 200               2
  13 = 201               2
  14 = 210               2
  15 = 211               2
  16 = 220               2
  17 = 221               2
  18 = 300               3
  etc.
Note that there is no any upper bound for the size of digits in this representation.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/#] &@ (k = 1; While[(k + 1)! <= n, k++]; k!), {n, 0, 120}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); }; \\ Antti Karttunen, Dec 24 2015
    
  • Python
    def a(n):
        i=2
        d=0
        while n:
            d=n%i
            n=(n - d)//i
            i+=1
        return d
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017, after PARI code
  • Scheme
    (define (A099563 n) (let loop ((n n) (i 2)) (let* ((dig (modulo n i)) (next-n (/ (- n dig) i))) (if (zero? next-n) dig (loop next-n (+ 1 i))))))
    (definec (A099563 n) (cond ((zero? n) n) ((= 1 (A265333 n)) 1) (else (+ 1 (A099563 (A257684 n)))))) ;; Based on given recurrence, using the memoization-macro definec
    ;; Antti Karttunen, Dec 24-25 2015
    

Formula

From Antti Karttunen, Dec 25 2015: (Start)
a(0) = 0; for n >= 1, if A265333(n) = 1 [when n is one of the terms of A265334], a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities. For all n >= 0:
a(A001563(n)) = n. [Sequence works as a left inverse for A001563.]
a(n) = A257686(n) / A048764(n).
(End)

Extensions

a(0) = 0 prepended and the alternative description added to the name-field by Antti Karttunen, Dec 24 2015

A055881 a(n) = largest m such that m! divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet and Labos Elemer, Jul 16 2000

Keywords

Comments

Number of factorial divisors of n. - Amarnath Murthy, Oct 19 2002
The sequence may be constructed as follows. Step 1: start with 1, concatenate and add +1 to last term gives: 1,2. Step 2: 2 is the last term so concatenate twice those terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3 we get 6 terms. Step 3: 3 is the last term, concatenate 3 times those 6 terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, iterates. At k-th step we obtain (k+1)! terms. - Benoit Cloitre, Mar 11 2003
From Benoit Cloitre, Aug 17 2007, edited by M. F. Hasler, Jun 28 2016: (Start)
Another way to construct the sequence: start from an infinite series of 1's:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Replace every second 1 by a 2 giving:
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... Replace every third 2 by a 3 giving:
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, ... Replace every fourth 3 by a 4 etc. (End)
This sequence is the fixed point, starting with 1, of the morphism m, where m(1) = 1, 2, and for k > 1, m(k) is the concatenation of m(k - 1), the sequence up to the first k, and k + 1. Thus m(2) = 1, 2, 1, 3; m(3) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4; m(4) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, etc. - Franklin T. Adams-Watters, Jun 10 2009
All permutations of n elements can be listed as follows: Start with the (arbitrary) permutation P(0), and to obtain P(n + 1), reverse the first a(n) + 1 elements in P(n). The last permutation is the reversal of the first, so the path is a cycle in the underlying graph. See example and fxtbook link. - Joerg Arndt, Jul 16 2011
Positions of rightmost change with incrementing rising factorial numbers, see example. - Joerg Arndt, Dec 15 2012
Records appear at factorials. - Robert G. Wilson v, Dec 21 2012
One more than the number of trailing zeros (A230403(n)) in the factorial base representation of n (A007623(n)). - Antti Karttunen, Nov 18 2013
A062356(n) and a(n) coincide quite often. - R. J. Cano, Aug 04 2014
For n>0 and 1<=j<=(n+1)!-1, (n+1)^2-1=A005563(n) is the number of times that a(j)=n-1. - R. J. Cano, Dec 23 2016

Examples

			a(12) = 3 because 3! is highest factorial to divide 12.
From _Joerg Arndt_, Jul 16 2011: (Start)
All permutations of 4 elements via prefix reversals:
   n:   permutation  a(n)+1
   0:   [ 0 1 2 3 ]  -
   1:   [ 1 0 2 3 ]  2
   2:   [ 2 0 1 3 ]  3
   3:   [ 0 2 1 3 ]  2
   4:   [ 1 2 0 3 ]  3
   5:   [ 2 1 0 3 ]  2
   6:   [ 3 0 1 2 ]  4
   7:   [ 0 3 1 2 ]  2
   8:   [ 1 3 0 2 ]  3
   9:   [ 3 1 0 2 ]  2
  10:   [ 0 1 3 2 ]  3
  11:   [ 1 0 3 2 ]  2
  12:   [ 2 3 0 1 ]  4
  13:   [ 3 2 0 1 ]  2
  14:   [ 0 2 3 1 ]  3
  15:   [ 2 0 3 1 ]  2
  16:   [ 3 0 2 1 ]  3
  17:   [ 0 3 2 1 ]  2
  18:   [ 1 2 3 0 ]  4
  19:   [ 2 1 3 0 ]  2
  20:   [ 3 1 2 0 ]  3
  21:   [ 1 3 2 0 ]  2
  22:   [ 2 3 1 0 ]  3
  23:   [ 3 2 1 0 ]  2
(End)
From _Joerg Arndt_, Dec 15 2012: (Start)
The first few rising factorial numbers (dots for zeros) with 4 digits and the positions of the rightmost change with incrementing are:
  [ 0]    [ . . . . ]   -
  [ 1]    [ 1 . . . ]   1
  [ 2]    [ . 1 . . ]   2
  [ 3]    [ 1 1 . . ]   1
  [ 4]    [ . 2 . . ]   2
  [ 5]    [ 1 2 . . ]   1
  [ 6]    [ . . 1 . ]   3
  [ 7]    [ 1 . 1 . ]   1
  [ 8]    [ . 1 1 . ]   2
  [ 9]    [ 1 1 1 . ]   1
  [10]    [ . 2 1 . ]   2
  [11]    [ 1 2 1 . ]   1
  [12]    [ . . 2 . ]   3
  [13]    [ 1 . 2 . ]   1
  [14]    [ . 1 2 . ]   2
  [15]    [ 1 1 2 . ]   1
  [16]    [ . 2 2 . ]   2
  [17]    [ 1 2 2 . ]   1
  [18]    [ . . 3 . ]   3
  [19]    [ 1 . 3 . ]   1
  [20]    [ . 1 3 . ]   2
  [21]    [ 1 1 3 . ]   1
  [22]    [ . 2 3 . ]   2
  [23]    [ 1 2 3 . ]   1
  [24]    [ . . . 1 ]   4
  [25]    [ 1 . . 1 ]   1
  [26]    [ . 1 . 1 ]   2
(End)
		

Crossrefs

This sequence occurs also in the next to middle diagonals of A230415 and as the second rightmost column of triangle A230417.
Other sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.
Analogous sequence for binary (base-2) representation: A001511.

Programs

  • Mathematica
    Table[Length[Intersection[Divisors[n], Range[5]!]], {n, 125}] (* Alonso del Arte, Dec 10 2012 *)
    f[n_] := Block[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 21 2012 *)
  • PARI
    See Cano link.
    
  • PARI
    n=5; f=n!; x='x+O('x^f); Vec(sum(k=1,n,x^(k!)/(1-x^(k!)))) \\ Joerg Arndt, Jan 28 2014
    
  • PARI
    a(n)=for(k=2,n+1,if(n%k, return(k-1),n/=k)) \\ Charles R Greathouse IV, May 28 2015
  • Scheme
    (define (A055881 n) (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 1)) (else (loop (/ n i) (+ 1 i))))))
    

Formula

G.f.: Sum_{k > 0} x^(k!)/(1 - x^(k!)). - Vladeta Jovovic, Dec 13 2002
a(n) = A230403(n)+1. - Antti Karttunen, Nov 18 2013
a(n) = A230415(n-1,n) = A230415(n,n-1) = A230417(n,n-1). - Antti Karttunen, Nov 19 2013
a(m!+n) = a(n) if 1 <= n <= m*m! - 1 = A001563(m) - 1. - R. J. Cano, Jun 27 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = e - 1 (A091131). - Amiram Eldar, Jul 23 2022

A001564 2nd differences of factorial numbers.

Original entry on oeis.org

1, 3, 14, 78, 504, 3720, 30960, 287280, 2943360, 33022080, 402796800, 5308934400, 75203251200, 1139544806400, 18394619443200, 315149522688000, 5711921639424000, 109196040425472000, 2196014181064704000, 46346783255764992000, 1024251745442365440000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of isolated fixed points (i.e. adjacent fixed points are not isolated) in all permutations of [n+2]. Example: a(2)=14 because we have (the isolated fixed points are marked) 1'423, 1'324', 1'342, 1'43'2, 413'2, 3124', 42'13, 2314', 243'1, 32'14', 32'41. - Emeric Deutsch, Apr 18 2009
The average of the first n terms is n factorial. - Franklin T. Adams-Watters, May 20 2010
Number of blocks in all permutations of [n+1]. A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67. Example: a(2)=14 because the permutations of [3], separated into blocks, are 123, 1-3-2, 2-1-3, 23-1, 3-12, 3-2-1 with 1+3+3+2+2+3=14 blocks. - Emeric Deutsch, Jul 12 2010
a(n) equals n+1 times the permanent of the (n+1) X (n+1) matrix with 1/(n+1) in the top right corner and 1's everywhere else. - John M. Campbell, May 25 2011
Number of permutations s of [n+2] where 2 designated elements are not mapped to themselves, e.g., s(1) != 1 and s(2) != 2. See Janjić article. - Benjamin Schreyer, May 07 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(n^2+n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Apr 10 2015
  • Maple
    seq(factorial(n)*(n^2+n+1), n = 0 .. 20); # Emeric Deutsch, Apr 18 2009
  • Mathematica
    Range[0,20]! CoefficientList[Series[(1+x^2)/(1-x)^3,{x,0,20}],x]
    Differences[Range[0, 25]!, 2] (* Paolo Xausa, Jul 17 2025 *)
  • PARI
    Vec(serlaplace((1+x^2)/(1-x)^3 + O(x^30))) \\ Michel Marcus, Apr 10 2015
    

Formula

a(n) = (n^2 + n + 1)*n! = A002061(n-1)*A000142(n). - Mitch Harris, Jul 10 2008
E.g.f.: (1+x^2)/(1-x)^3.
a(n) = A001563(n+1) - A001563(n). - Robert Israel, Apr 13 2015
a(n) = A306209(n+2,n). - Alois P. Heinz, Jan 29 2019
D-finite with recurrence a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jul 01 2022

Extensions

Comment edited by Franklin T. Adams-Watters, May 20 2010

A047920 Triangular array formed from successive differences of factorial numbers.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 6, 4, 3, 2, 24, 18, 14, 11, 9, 120, 96, 78, 64, 53, 44, 720, 600, 504, 426, 362, 309, 265, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 362880, 322560
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of 1,2,...,k,n+1,n+2,...,2n-k that have no agreements with 1,...,n. For example, consider 1234 and 1256, then n=4 and k=2, so T(4,2)=14. Compare A000255 for the case k=1. - Jon Perry, Jan 23 2004
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having smallest fixed point equal to k. Example: T(3,1)=4 because we have 4213, 4231, 3214, and 3241 (the permutations of {1,2,3,4} having smallest fixed equal to 2).
Row sums give the number of non-derangement permutations of {1,2,...,n} (A002467).
Mirror image of A068106.
Closely related to A134830, where each row has an extra term (see the Charalambides reference).
(End)
T(n,k) is the number of permutations of {1..n} that don't fix the points 1..k. - Robert FERREOL, Aug 04 2016

Examples

			Triangle begins:
    1;
    1,  0;
    2,  1,  1;
    6,  4,  3,  2;
   24, 18, 14, 11,  9;
  120, 96, 78, 64, 53, 44;
  ...
The left-hand column is the factorial numbers (A000142). The other numbers in the row are calculated by subtracting the numbers in the previous row. For example, row 4 is 6, 4, 3, 2, so row 5 is 4! = 24, 24 - 6 = 18, 18 - 4 = 14, 14 - 3 = 11, 11 - 2 = 9. - _Michael B. Porter_, Aug 05 2016
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3. [From Emeric Deutsch, Apr 21 2009]

Crossrefs

Columns give A000142, A001563, A001564, etc. Cf. A047922.
See A068106 for another version of this triangle.
Orthogonal columns: A000166, A000255, A055790. Main diagonal A033815.
Cf. A002467, A068106, A134830. - Emeric Deutsch, Apr 21 2009
Cf. A155521.
T(n+2,n) = 2*A000153(n+1). T(n+3,n) = 6*A000261(n+2). T(n+4,n) = 24*A001909(n+3). T(n+5, n) = 120*A001910(n+4). T(n+6,n) = 720*A176732(n).
T(n+7,n) = 5040*A176733(n) - Richard R. Forberg, Dec 29 2013

Programs

  • Haskell
    a047920 n k = a047920_tabl !! n !! k
    a047920_row n = a047920_tabl !! n
    a047920_tabl = map fst $ iterate e ([1], 1) where
       e (row, n) = (scanl (-) (n * head row) row, n + 1)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(n-k, j)*d[n-j], j = 0 .. n-k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 17 2009
    # second Maple program:
    T:= proc(n, k) option remember;
         `if`(k=0, n!, T(n, k-1)-T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 01 2021
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*Binomial[k, j]*(n-j)!, {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, May 17 2011, after Philippe Deléham *)
    T[n_, k_] := n! Hypergeometric1F1[-k, -n, -1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten  (* Peter Luschny, Jul 28 2024 *)
  • PARI
    row(n) = vector(n+1, k, k--; sum(j=0, n, (-1)^j * binomial(k, j)*(n-j)!)); \\ Michel Marcus, Sep 04 2021

Formula

t(n, k) = t(n, k-1) - t(n-1, k-1) = t(n, k+1) - t(n-1, k) = n*t(n-1, k) + k*t(n-2, k-1) = (n-1)*t(n-1, k-1) + (k-1)*t(n-2, k-2) = A060475(n, k)*(n-k)!. - Henry Bottomley, Mar 16 2001
T(n, k) = Sum_{j>=0} (-1)^j * binomial(k, j)*(n-j)!. - Philippe Deléham, May 29 2005
T(n,k) = Sum_{j=0..n-k} d(n-j)*binomial(n-k,j), where d(i)=A000166(i) are the derangement numbers. - Emeric Deutsch, Jul 17 2009
Sum_{k=0..n} (k+1)*T(n,k) = A155521(n+1). - Emeric Deutsch, Jul 18 2009
T(n, k) = n!*hypergeom([-k], [-n], -1). - Peter Luschny, Jul 28 2024

A055790 a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2.

Original entry on oeis.org

0, 2, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, 2657907184, 36828901754, 547499510764, 8691268384262, 146725287298888, 2624698909845026, 49592184973992676, 986871395973226286, 20630087248996393888, 451982388752415571082
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2000

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n-1 zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202. - Jaap Spies, Dec 12 2003
With a(0) = 1, number of degree-(n+1) permutations p such that p(i) != i+2 for each i=1,2,...,n+1. - Vladeta Jovovic, Jan 03 2003
Equivalently number of degree-(n+1) permutations p such that p(i) != i-2 for each i=1,2,...,n+1.
With a(0) = 1, number of degree-(n+1) permutations without fixed points between 2 and n. - Olivier Gérard, Jul 29 2016
Also column 3 of Euler's difference table (third diagonal in example of A068106). - Enrique Navarrete, Oct 31 2016
For n>=2, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+3), 1<=j<=n-1. For example, for n=2, the 4 circular permutations in S4 that avoid the substring {14} are (1234),(1243),(1324),(1342). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017

Examples

			G.f. = 2*x + 4*x^2 + 14*x^3 + 64*x^4 + 362*x^5 + 2428*x^6 + ...
a(3) = 3*a(2)+(3-2)*a(1) = 12+2 = 14.
for n=1, the 2 permutations of [2] matches:
12, 21
for n=2, the 4 permutations of [3] without 2 as a fixed point are
132, 213, 231, 312.
for n=3, the 14 permutations of [4] without fixed point at 2 or 3 are
1324 1342 1423    2143 2314 2341 2413
3124 3142 3412 3421    4123 4312 4321
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.

Crossrefs

Cf. A000166 (Derangements, permutations without fixed points ).
Cf. A000255 (permutations with p(i)!=i+1, same type of recurrence).
Apart from first term, appears in triangles A047920 or A068106 of differences of factorials, i.e. as third term of A000142, A001563, A001564, A001565 etc.

Programs

  • Haskell
    a055790 n = a055790_list !! n
    a055790_list = 0 : 2 : zipWith (+)
       (zipWith (*) [0..] a055790_list) (zipWith (*) [2..] $ tail a055790_list)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    f := proc(n) option remember; if n <= 1 then 2*n else n*f(n-1)+(n-2)*f(n-2); fi; end;
  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = a[n] = n*a[n - 1] + (n - 2)*a[n - 2];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 14 2017 *)
    RecurrenceTable[{a[0]==0,a[1]==2,a[n]==n*a[n-1]+(n-2)a[n-2]},a,{n,30}] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    a(n) = if(n==0, 0, round((n+3+1/n)*n!/exp(1))) \\ Felix Fröhlich, Jul 29 2016

Formula

For n > 0, a(n) = round[(n+3+1/n)*n!/e] = 2*A000153(n) = A000255(n-1)+A000255(n) = A000166(n-1)+2*A000166(n)+A000166(n+1).
G.f.: Q(0)*(1+x)/x - 1/x - 2, where Q(k)= 1 + (2*k + 1)*x/( (1+x) - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: (1+x)^2/x/Q(0) - 1/x - 2, where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*(1+x)/G(0) - 1-x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: W(0) -1, where W(k) = 1 - x*(k+2)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ sqrt(Pi/2)*n^n*sqrt(n)*(12*n + 37)/(6*exp(n+1)). - Ilya Gutkovskiy, Jul 29 2016
0 = a(n)*(+a(n+1) + 3*a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for n>=0. - Michael Somos, Nov 01 2016

Extensions

Comments corrected, new interpretation and examples by Olivier Gérard, Jul 29 2016

A068106 Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 6, 9, 11, 14, 18, 24, 44, 53, 64, 78, 96, 120, 265, 309, 362, 426, 504, 600, 720, 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 14833, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 133496, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2002

Keywords

Comments

Triangle T(n,k) (n >= 1, 1 <= k <= n) giving number of ways of winning with (n-k+1)st card in the generalized "Game of Thirteen" with n cards.
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having largest fixed point equal to k. Example: T(3,1)=3 because we have 1243, 4213, and 3241.
Mirror image of A047920.
(End)

Examples

			Triangle begins:
[0]    1;
[1]    0,    1;
[2]    1,    1,    2;
[3]    2,    3,    4,    6;
[4]    9,   11,   14,   18,   24;
[5]   44,   53,   64,   78,   96,  120;
[6]  265,  309,  362,  426,  504,  600,  720;
[7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.
		

Crossrefs

Row sums give A002467.
Diagonals give A000142, A001563, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047 (factorials and k-th differences, k=1..10).
See A047920 and A086764 for other versions.
T(2*n, n) is A033815.

Programs

  • Haskell
    a068106 n k = a068106_tabl !! n !! k
    a068106_row n = a068106_tabl !! n
    a068106_tabl = map reverse a047920_tabl
    -- Reinhard Zumkeller, Mar 05 2012
  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jul 18 2009
  • Mathematica
    t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 21 2012, after Philippe Deléham *)
    T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];
    Table[T[n, k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n, k) = Sum_{j>= 0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, May 29 2005
From Emeric Deutsch, Jul 18 2009: (Start)
T(n,k) = Sum_{j=0..k} d(n-j)*binomial(k, j), where d(i) = A000166(i) are the derangement numbers.
Sum_{k=0..n} (k+1)*T(n,k) = A000166(n+2) (the derangement numbers). (End)
T(n, k) = n!*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017
D-finite recurrence for columns: T(n,k) = n*T(n-1,k) + (n-k)*T(n-2,k). - Georg Fischer, Aug 13 2022

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by N. J. A. Sloane, Sep 24 2011
Previous Showing 31-40 of 163 results. Next