A145502
a(n+1) = a(n)^2+2*a(n)-2 and a(1)=2.
Original entry on oeis.org
2, 6, 46, 2206, 4870846, 23725150497406, 562882766124611619513723646, 316837008400094222150776738483768236006420971486980606
Offset: 1
- Peter Bala, Notes on A145502-A145510.
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
-
aa = {}; k = 2; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
(* or *)
k = 1; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}]
NestList[#^2+2#-2&,2,10] (* Harvey P. Dale, Dec 14 2021 *)
A000324
A nonlinear recurrence: a(0) = 1, a(1) = 5, a(n) = a(n-1)^2 - 4*a(n-1) + 4 for n>1.
Original entry on oeis.org
1, 5, 9, 49, 2209, 4870849, 23725150497409, 562882766124611619513723649, 316837008400094222150776738483768236006420971486980609
Offset: 0
- Derek Jennings, Some reciprocal summation identities with applications to the Fibonacci and Lucas numbers, in: G. E. Bergum, Applications of Fibonacci Numbers, Vol. 7, Bergum G. E. et al. (eds.), Kluwer Academic Publishers, 1998, pp. 197-200.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
- Solomon W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly, Vol. 70, No. 4 (1963), 403-405.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- Seppo Mustonen, On integer sequences with mutual k-residues, 2005.
- Seppo Mustonen, On integer sequences with mutual k-residues, 2005. [Local copy]
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
-
t = {1, 5}; Do[AppendTo[t, t[[-1]]^2 - 4*t[[-1]] + 4], {n, 11}] (* T. D. Noe, Jun 19 2012 *)
Join[{1}, RecurrenceTable[{a[n] == a[n-1]^2 - 4*a[n-1] + 4, a[1] == 5}, a, {n, 1, 8}]] (* Jean-François Alcover, Feb 07 2016 *)
Join[{1},NestList[#^2-4#+4&,5,10]] (* Harvey P. Dale, Dec 11 2023 *)
-
a(n)=if(n<2,max(0,1+4*n),a(n-1)^2-4*a(n-1)+4)
-
a(n)=if(n<1,n==0,n=2^n;fibonacci(n+1)+fibonacci(n-1)+2)
A003423
a(n) = a(n-1)^2 - 2, with a(0) = 6.
Original entry on oeis.org
6, 34, 1154, 1331714, 1773462177794, 3145168096065837266706434, 9892082352510403757550172975146702122837936996354
Offset: 0
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10
- P. Liardet and P. Stambul, Series d'Engel et fractions continuees, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
- E. Lucas, Théorie des Fonctions Numériques Simplement Périodiques, II, Amer. J. Math., 1 (1878), 289-321.
- Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
- J. Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
- J. Shallit & N. J. A. Sloane, Correspondence 1974-1975
- Wikipedia, Engel Expansion
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
a:= n-> simplify(2*ChebyshevT(2^n, 3), 'ChebyshevT'):
seq(a(n), n=0..7);
-
a[1] := 6; a[n_] := a[n - 1]^2 - 2; Table[a[n], {n, 1, 8}] (* Stefan Steinerberger, Apr 11 2006 *)
Table[Round[(1 + Sqrt[2])^(2^n)], {n, 1, 7}] (* Artur Jasinski, Sep 25 2008 *)
NestList[#^2-2&,6,10] (* Harvey P. Dale, Nov 11 2011 *)
-
a(n)=if(n<1, 6*(n==0), a(n-1)^2-2)
A003487
a(n) = a(n-1)^2 - 2, with a(0) = 5.
Original entry on oeis.org
5, 23, 527, 277727, 77132286527, 5949389624883225721727, 35395236908668169265765137996816180039862527, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825727
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a:= n-> simplify(2*ChebyshevT(2^n, 1/2*5), 'ChebyshevT'):
seq(a(n), n=0..7);
-
NestList[#^2-2&,5,10] (* Harvey P. Dale, Feb 19 2015 *)
a[ n_] := If[ n < 0, 0, 2 ChebyshevT[2^n, 5/2]]; (* Michael Somos, Dec 06 2016 *)
-
{a(n) = if( n<0, 0, polchebyshev(2^n, 1, 5/2) * 2)}; /* Michael Somos, Dec 06 2016 */
A048757
Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).
Original entry on oeis.org
1, 4, 9, 33, 56, 203, 441, 1596, 2585, 9353, 20304, 73461, 124033, 448756, 974169, 3524577, 5702888, 20633243, 44791065, 162055596, 273617239, 989956471, 2149017696, 7775219067, 12591974497, 45558191716, 98898651657
Offset: 0
1 = Fib(2) = 1;
101 = Fib(4) + Fib(2) = 3 + 1 = 4;
10001 = Fib(6) + Fib(2) = 8 + 1 = 9;
1010101 = Fib(8) + Fib(6) + Fib(4) + Fib(2) = 21 + 8 + 3 + 1 = 33; etc.
-
Table[Sum[Mod[Binomial[2n, i], 2] Fibonacci[i + 2], {i, 0, 2n}], {n, 0, 19}] (* Alonso del Arte, Apr 27 2014 *)
A144837
a(n) = Lucas(5^n).
Original entry on oeis.org
11, 167761, 132878596168524201724674011
Offset: 1
The base 5 representation of a(3) = 132878596168524201724674011 begins 1 + 2*5 + 0*(5^2) + 2*(5^3) + 3*(5^4) + 0*(5^5) + 4*(5^6) + O(5^7) so A269591 begins [1, 2, 0, 2, 3, 0, 4, ...]. - _Peter Bala_, Nov 14 2022
-
a := proc(n) option remember; if n = 1 then 11 else a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1) end if; end;
seq(a(n), n = 1..5); # Peter Bala, Nov 14 2022
-
Table[Round[GoldenRatio^(5^n)], {n, 1, 5}]
c = (1 + Sqrt[5])/2; Table[Expand[c^(5^n) + (1 - c)^(5^n)], {n, 1, 5}] (* Artur Jasinski, Oct 05 2008 *)
LucasL[5^Range[5]] (* Harvey P. Dale, Apr 01 2023 *)
A135927
a(n) = a(n-1)^2 - 2 with a(1) = 10.
Original entry on oeis.org
10, 98, 9602, 92198402, 8500545331353602, 72259270930397519221389558374402, 5221402235392591963136699520829303150191924374488750728808857602
Offset: 1
a(4) = 2*cosh(2^3*log(5 + 2*sqrt(6))) = 92198402.
- Gabriel Klambauer, Summation of Series, Amer. Math. Monthly, Vol. 87, No. 2 (Feb., 1980), pp. 128-130.
- Raphael M. Robinson, Mersenne and Fermat Numbers, Proceedings of the American Mathematical Society, Vol. 5, No. 5. (October 1954), pp. 842-846.
- E. L. Roettger and H. C. Williams, Some Remarks Concerning the Lucas-Lehmer Primality Test, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.5. See p. 3.
- Wikipedia, Engel expansion
Original entry on oeis.org
15005, 792070839820228500005, 311759807762174781605301007201736860141952393239819056256447450170889021063181630442743411596527196875005
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/Sqrt[5]]/Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 5}]
A002813
a(0) = 4; for n > 0, a(n) = a(n-1)^3 - 3*a(n-1)^2 + 3.
Original entry on oeis.org
4, 19, 5779, 192900153619, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155219
Offset: 0
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..8
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977.
- E. Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
- J. Shallit Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion
-
[Lucas(2*3^n)+1: n in [0..5]]; // Vincenzo Librandi, Jul 20 2011
-
NestList[#^3-3#^2+3&,4,6] (* Harvey P. Dale, Jul 19 2011 *)
-
a(n)=if(n<1,4*(n==0),a(n-1)^3-3*a(n-1)^2+3)
-
a(n)=if(n<0,0,n=2*3^n;fibonacci(n+1)+fibonacci(n-1)+1)
Original entry on oeis.org
329, 10749959329, 13354478338703157414450712411084788083329
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^(n + 1)) - (1 - G)^(4^(n + 1)))/Sqrt[5]]/Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 5}]
Comments