cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A157014 Expansion of x*(1-x)/(1 - 22*x + x^2).

Original entry on oeis.org

1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1

Views

Author

Paul Weisenhorn, Feb 21 2009

Keywords

Comments

This sequence is part of a solution of a general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, where solutions are given by the recurrences:
a(1) = 1, a(2) = 4*A+1, a(n) = (4*A+2)*a(n-1)-a(n-2) for n>2, resulting in a(n) terms 1, 4*A+1, 16*A^2+12*A+1, 64*A^3+80*A^2+24*A+1, ...;
b(1) = 1, b(2) = 4*A+3, b(n) = (4*A+2)*b(n-1)-b(n-2) for n>2, resulting in b(n) terms 1, 4*A+3, 16*A^2+20*A+5, 64*A^3+112*A^2+56*A+7, ...;
c(1) = 0, c(2) = 16*A+8, c(3) = (16*A^2+16*A+3)*c(2), c(n) = (16*A^2+16*A+3) * (c(n-1)-c(n-2)) + c(n-3) for n>3, resulting in c(n) terms 0, 16*A+8, 256*A^3+384*A^2+176*A+24, 4096*A^5 + 10240*A^4 + 9472*A^3 + 3968*A^2 + 736*A + 48, ... .
A157014 is the a(n) sequence for A=5.
For other A values the a(n), b(n) and c(n) sequences are in the OEIS:
A a-sequence b-sequence c-sequence
2 A072256 A054320(n-1) A045502(n-1)
9 A097315(n-1) A097314(n-1) A157881
Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 20 = 0. - Colin Barker, Feb 19 2014
From Klaus Purath, Apr 22 2025: (Start)
Nonnegative solutions to the Diophantine equation 5*b(n)^2 - 6*a(n)^2 = -1. The corresponding b(n) are A133283(n). Note that (b(n+1)^2 - b(n)*b(n+2))/4 = 6 and (a(n)*a(n+2) - a(n+1)^2)/4 = 5.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A077421(n-1) = Lucas U(22,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n-1) + t(i))/(t(i+n) + t(i+n-1)) as long as t(i+n) + t(i+n-1) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 21*t(i+2) - 21*t(i+1) + t(i) or t(i+2) = 22*t(i+1) - t(i) without regard to initial values and including this sequence itself. (End)

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041049 *)
    a[30, 20] (* Gerry Martens, Jun 07 2015 *)
    Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
  • PARI
    Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    [chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: x*(1-x)/(1-22*x+x^2).
a(1) = 1, a(2) = 21, a(n) = 22*a(n-1) - a(n-2) for n>2.
5*A157460(n)+1 = a(n)^2 for n>=1.
6*A157460(n)+1 = A133283(n)^2 for n>=1.
a(n) = (6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n))/(12*(11+2*sqrt(30))^n). - Gerry Martens, Jun 07 2015
a(n) = ChebyshevU(n-1, 11) - ChebyshevU(n-2, 11). - G. C. Greubel, Jan 14 2020

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A165253 Triangle T(n,k), read by rows given by [1,0,1,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 15, 7, 1, 0, 1, 15, 35, 28, 9, 1, 0, 1, 21, 70, 84, 45, 11, 1, 0, 1, 28, 126, 210, 165, 66, 13, 1, 0, 1, 36, 210, 462, 495, 286, 91, 15, 1, 0, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 0, 1, 55, 495, 1716, 3003, 3003, 1820, 680
Offset: 0

Views

Author

Philippe Deléham, Sep 10 2009

Keywords

Comments

Mirror image of triangle in A121314.

Examples

			Triangle begins:
  1;
  1,    0;
  1,    1,    0;
  1,    3,    1,    0;
  1,    6,    5,    1,    0;
  1,   10,   15,    7,    1,    0;
  1,   15,   35,   28,    9,    1,    0;
  1,   21,   70,   84,   45,   11,    1,    0;
  1,   28,  126,  210,  165,   66,   13,    1,    0;
  1,   36,  210,  462,  495,  286,   91,   15,    1,    0,
  1,   45,  330,  924, 1287, 1001,  455,  120,   17,    1,    0;
		

Crossrefs

Programs

  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{1, 0, 1}, Table[0, {m}]], Join[{0, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

T(0,0)=1, T(n,k) = binomial(n-1+k,2k) for n >= 1.
Sum {k=0..n} T(n,k)*x^k = A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001519(n), A047849(n), A165310(n), A165311(n), A165312(n), A165314(n), A165322(n), A165323(n), A165324(n) for x= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 26 2009
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=0. - Philippe Deléham, Feb 18 2012
G.f.: (1-x-y*x)/((1-x)^2-y*x). - Philippe Deléham, Feb 19 2012

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A350916 Positive integers k such that (k+1)^4 has a divisor congruent to -1 modulo k.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 14, 17, 29, 35, 41, 43, 59, 65, 69, 125, 134, 139, 174, 194, 339, 386, 449, 461, 681, 901, 937, 1169, 1322, 1325, 1715, 1971, 2211, 3054, 6395, 7989, 8857, 9077, 10849, 11483, 12545, 13082, 20909, 21506, 23861, 35233, 54734, 62210, 66923, 89045, 129494, 143289, 172899, 174725, 203321, 332315, 375129, 390051, 426389, 493697, 561513, 982094
Offset: 1

Views

Author

Max Alekseyev, Jan 21 2022

Keywords

Comments

For (k+1)^3 similar sequence is finite {1, 2, 3, 5, 9, 11, 14}, while for (k+1)^2 it is just {1, 2, 3, 5}. Starting with power 4 (this sequence), the number of values of k is infinite. One series of values for power 6 is given by A001570.
Formed by the union of 10 linear recurrent sequences satisfying b(n) = q*b(n-1) - b(n-2) - 4: A350919 (q=3), A350920 (q=4), A350921 (q=6), A350922 (q=7), A350923 (q=10), A103974 (q=14), A350924 (q=16), A350925 (q=16), A350926 (q=23), A350917 (q=23). Each of them give identities (b(n)+1)^4 = (b(n)*b(n-1)-1) * (b(n)*b(n+1)-1).
Only terms 1, 2, 5, 9, 11, 14, 29 are shared between two or more sequences, all others come from exactly one sequence.

Crossrefs

Programs

  • PARI
    { for(k=1,10^6, fordiv((k+1)^4,d, if(Mod(d,k)==-1, print1(k,", "); break)) ); }

A133607 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, -2, 1, 0, 1, -1, -3, 2, 1, 0, 1, -1, -4, 3, 3, -1, 0, 1, -1, -5, 4, 6, -3, -1, 0, 1, -1, -6, 5, 10, -6, -4, 1, 0, 1, -1, -7, 6, 15, -10, -10, 4, 1, 0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 27 2007

Keywords

Comments

Previous name: Triangle T(n,k), 0<=k<=n, read by rows given by [0, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, -1;
  0, 1, -1, -1;
  0, 1, -1, -2, 1;
  0, 1, -1, -3, 2, 1;
  0, 1, -1, -4, 3, 3, -1;
  0, 1, -1, -5, 4, 6, -3, -1;
  0, 1, -1, -6, 5, 10, -6, -4, 1;
  0, 1, -1, -7, 6, 15, -10, -10, 4, 1;
  0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  0, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
Triangle A103631 begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 2, 1;
  0, 1, 1, 3, 2, 1;
  0, 1, 1, 4, 3, 3, 1;
  0, 1, 1, 5, 4, 6, 3, 1;
  0, 1, 1, 6, 5, 10, 6, 4, 1;
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1;
  0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1;
  0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
  0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1;
  ...
Triangle A108299 begins:
  1;
  1, -1;
  1, -1, -1;
  1, -1, -2, 1;
  1, -1, -3, 2, 1;
  1, -1, -4, 3, 3, -1;
  1, -1, -5, 4, 6, -3, -1;
  1, -1, -6, 5, 10, -6, -4, 1;
  1, -1, -7, 6, 15, -10, -10, 4, 1;
  1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
		

Crossrefs

Another version is A108299.
Unsigned version is A103631 (T(n,k) = A103631(n,k)*A057077(k)).

Programs

  • Mathematica
    m = 13
    (* DELTA is defined in A084938 *)
    DELTA[Join[{0, 1}, Table[0, {m}]], Join[{1, -2, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k-1) qStirling2[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}] qStirling2[n-1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n, k, -1], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([q_stirling_number2(n,k).substitute(q=-1) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A057077(n), A010892(n), A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n-1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 respectively .
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A010892(n), A133631(n), A133665(n), A133666(n), A133667(n), A133668(n), A133669(n), A133671(n), A133672(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively .
G.f.: (1-x+y*x)/(1-x+y^2*x^2). - Philippe Deléham, Mar 14 2012
T(n,k) = T(n-1,k) - T(n-2,k-2), T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = -1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 14 2012

Extensions

New name from Peter Luschny, Mar 09 2020

A103200 a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.

Original entry on oeis.org

1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1

Views

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

Comments

The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.
This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - Gerald McGarvey, Mar 29 2005

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

Cf. A103201, A177187 (first differences).

Programs

  • Magma
    I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
  • Maple
    a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
    CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)

Formula

Comments from Pierre CAMI and Gerald McGarvey, Apr 20 2005: (Start)
Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.
G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)
a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - Ralf Stephan, May 18 2007
a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Sep 27 2011

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A105038 Nonnegative n such that 6*n^2 + 6*n + 1 is a square.

Original entry on oeis.org

0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4x/(1-11x+11x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{11,-11,1},{0,4,44},30] (* Harvey P. Dale, Sep 29 2013 *)
  • PARI
    for(n=0,427284,if(issquare(6*n*(n+1)+1),print1(n,",")))
    
  • PARI
    Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012

Formula

G.f.: 4*x/(1-11*x+11*x^2-x^3).
a(0)=0, a(1)=4, a(2)=44, a(n)=11*a(n-1)-11*a(n-2)+a(n-3). - Harvey P. Dale, Sep 29 2013
a(n) = (-6-(5-2*sqrt(6))^n*(-3+sqrt(6))+(3+sqrt(6))*(5+2*sqrt(6))^n)/12. - Colin Barker, Mar 05 2016
a(n) = (A072256(n+1) - 1)/2.

Extensions

More terms from Vladeta Jovovic, Apr 05 2005
Incorrect conjectures deleted by N. J. A. Sloane, Nov 24 2010

A188646 Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   1,      1,         1,            1, ...
   2 | 1,  13,    181,      2521,        35113, ...
   3 | 1,  33,   1121,     38081,      1293633, ...
   4 | 1,  61,   3781,    234361,     14526601, ...
   5 | 1,  97,   9505,    931393,     91267009, ...
   6 | 1, 141,  20021,   2842841,    403663401, ...
   7 | 1, 193,  37441,   7263361,   1409054593, ...
   8 | 1, 253,  64261,  16322041,   4145734153, ...
   9 | 1, 321, 103361,  33281921,  10716675201, ...
  10 | 1, 397, 158005,  62885593,  25028308009, ...
  11 | 1, 481, 231841, 111746881,  53861764801, ...
  12 | 1, 573, 328901, 188788601, 108364328073, ...
  13 | 1, 673, 453601, 305726401, 206059140673, ...
  14 | 1, 781, 610741, 477598681, 373481557801, ...
  15 | 1, 897, 805505, 723342593, 649560843009, ...
  ...
		

Crossrefs

Column 1 is A082109(n-1).
Cf. A188644, A188647 (f(x, y) as above with y=1).
Diagonal gives A322904.

Programs

Formula

A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).

Original entry on oeis.org

1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
a(n) is a solution to the Pell equation (4*a(n))^2 - 15*b(n)^2 = 1. The corresponding b(n) are A258684(n). - Klaus Purath, Jul 19 2025

Crossrefs

Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).

Programs

  • Mathematica
    LinearRecurrence[{62, -1}, {1, 61}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025

A001922 Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).

Original entry on oeis.org

1, 8, 105, 1456, 20273, 282360, 3932761, 54776288, 762935265, 10626317416, 148005508553, 2061450802320, 28712305723921, 399910829332568, 5570039304932025, 77580639439715776, 1080558912851088833, 15050244140475527880, 209622859053806301481
Offset: 0

Views

Author

Keywords

Comments

Also larger of two consecutive integers whose cubes differ by a square. Defined by a(n)^3 - (a(n) - 1)^3 = square.
Let m be the n-th ratio 2/1, 7/4, 26/15, 97/56, 362/209, ... Then a(n) = m*(2-m)/(m^2-3). The numerators 2, 7, 26, ... of m are A001075. The denominators 1, 4, 15, ... of m are A001353.
From Colin Barker, Jan 06 2015: (Start)
Also indices of centered triangular numbers (A005448) which are also centered square numbers (A001844).
Also indices of centered hexagonal numbers (A003215) which are also centered octagonal numbers (A016754).
Also positive integers x in the solutions to 3*x^2 - 4*y^2 - 3*x + 4*y = 0, the corresponding values of y being A156712.
(End)

Examples

			8 is in the sequence because 3*8^2 - 3*8 + 1 = 169 is a square and also a centered hexagonal number. - _Colin Barker_, Jan 07 2015
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 8, 105]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 16 2012
    
  • Maple
    seq(simplify((1 +ChebyshevU(n,7) +ChebyshevU(n-1,7))/2), n=0..30); # G. C. Greubel, Oct 07 2022
  • Mathematica
    With[{s1=3+2Sqrt[3],s2=3-2Sqrt[3],t1=7+4Sqrt[3],t2=7-4Sqrt[3]}, Simplify[ Table[(s1 t1^n+s2 t2^n+6)/12,{n,0,20}]]] (* or *) LinearRecurrence[ {15,-15,1},{1,8,105},21] (* Harvey P. Dale, Aug 14 2011 *)
    CoefficientList[Series[(1-7*x)/(1-15*x+15*x^2-x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 16 2012 *)
  • PARI
    Vec((1-7*x)/(1-15*x+15*x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 06 2015
    
  • SageMath
    [(1+chebyshev_U(n,7) +chebyshev_U(n-1,7))/2 for n in range(30)] # G. C. Greubel, Oct 07 2022

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (s1*t1^n + s2*t2^n + 6)/12 where s1 = 3 + 2*sqrt(3), s2 = 3 - 2*sqrt(3), t1 = 7 + 4*sqrt(3), t2 = 7 - 4*sqrt(3).
a(n) = A001075(n)*A001353(n+1).
G.f.: (1-7*x)/((1-x)*(1-14*x+x^2)). - Simon Plouffe (in his 1992 dissertation) and Colin Barker, Jan 01 2012
a(n) = A076139(n+1) - 7*A076139(n). - R. J. Mathar, Jul 14 2015
a(n) = (1/2)*(1 + ChebyshevU(n, 7) + ChebyshevU(n-1, 7)). G. C. Greubel, Oct 07 2022
a(n) = 1 - a(-1-n) = 1 + A001921(n) for all integers n. - Michael Somos, Jul 10 2025

Extensions

Additional comments from James R. Buddenhagen, Mar 04 2001
Name improved by Colin Barker, Jan 07 2015
Edited by Robert Israel, Feb 20 2017
Previous Showing 11-20 of 47 results. Next