cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 79 results. Next

A052469 Denominators in the Taylor series for arccosh(x) - log(2*x).

Original entry on oeis.org

4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
Offset: 1

Views

Author

Keywords

Examples

			arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
		

References

  • Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.

Crossrefs

Cf. A002595.

Programs

  • GAP
    List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
  • Magma
    [Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
    
  • Mathematica
    a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
  • PARI
    {a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
    
  • Sage
    [denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
    

Formula

A052468(n) / a(n) = A001147(n) / ( A000165(n) *2*n )
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denom((2*n-1)!/( 4^n * (n!)^2)).
Equals 2*A162442(n+1) for n >= 1.
A052468(n)/a(n) = (1/(2*n))*A001790(n)/A046161(n) for n>=1.
(End)

Extensions

Updated by Frank Ellermann, May 22 2001

A069954 a(n) = binomial(2^(n+1), 2^n)/2 = binomial(2^(n+1) - 1, 2^n) = binomial(2^(n+1) - 1, 2^n-1).

Original entry on oeis.org

1, 3, 35, 6435, 300540195, 916312070471295267, 11975573020964041433067793888190275875, 2884329411724603169044874178931143443870105850987581016304218283632259375395
Offset: 0

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Terms are always odd. a(1) = A061548(2), a(2) = A061548(3), a(3) = A061548(5), a(4) = A061548(9), a(5) = A061548(17), ... Hence it seems that a(n) = A061548(A000051(n)).
C(2*k, k)/2 = C(2*k-1, k) = C(2*k-1, k-1) is odd if and only if k = 2^n. - Michael Somos, Mar 12 2014

Examples

			C(2,1)/2 = C(1,0) = C(1,1) = 1. C(4,2)/2 = C(3,1) = C(3,2) = 3. C(8,4)/2 = C(7,3) = C(7,4) = 35. - _Michael Somos_, Mar 12 2014
		

Crossrefs

Programs

  • Magma
    [Binomial(2^(n+1)-1, 2^n-1): n in [0..10]]; // Vincenzo Librandi, Mar 14 2014
    
  • Mathematica
    Table[Binomial[2^(n+1) -1, 2^n -1], {n, 0, 10}] (* Vincenzo Librandi, Mar 14 2014 *)
  • SageMath
    [binomial(2^(n+1) -1, 2^n) for n in (0..9)] # G. C. Greubel, Aug 16 2022

Formula

From Harry Richman, May 18 2023: (Start)
a(n) = A001790(2^n).
a(n) = 1/2 * A000984(2^n).
a(n) = 1/2 * (2^n + 1) * A000108(2^n).
log log a(n) ~ (log 2) * (n + 1) + log log 2 + O(n / 2^n). (End)
a(n) = A037293(n+1) / 2. - Tilman Piesk, Oct 11 2024

Extensions

a(0) = 1 added by Michael Somos, Mar 12 2014

A069955 Let W(n) = Product_{k=1..n} (1 - 1/4k^2), the partial Wallis product (lim_{n->oo} W(n) = 2/Pi); then a(n) = numerator(W(n)).

Original entry on oeis.org

1, 3, 45, 175, 11025, 43659, 693693, 2760615, 703956825, 2807136475, 44801898141, 178837328943, 11425718238025, 45635265151875, 729232910488125, 2913690606794775, 2980705490751054825, 11912508103174630875, 190453061649520333125, 761284675790187924375
Offset: 0

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n>=1} 4*n^2/(4*n^2-1). Numerators are in A056982.

References

  • Orin J. Farrell and Bertram Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.

Crossrefs

Not the same as A001902(n).
Cf. A056982 (denominators), A001790, A046161.
W(n)=(3/4)*(A120995(n)/A120994(n)), n>=1.

Programs

  • Mathematica
    a[n_] := Numerator[Product[1 - 1/(4*k^2), {k, 1, n}]]; Array[a, 20, 0] (* Amiram Eldar, May 07 2025 *)
  • PARI
    a(n) = numerator(prod(k=1, n, 1-1/(4*k^2))); \\ Michel Marcus, Oct 22 2016

Formula

a(n) = numerator(W(n)), where W(n) = (2*n)!*(2*n+1)!/((2^n)*n!)^4.
W(n) = (2*n+1)*(binomial(2*n,n)/2^(2*n))^2 = (2*n+1)*(A001790(n)/A046161(n))^2 in lowest terms.
a(n) = (-1)^n*A056982(n)*C(-1/2,n)*C(n+1/2,n). - Peter Luschny, Apr 08 2016

A273194 a(n) = numerator(R(n,3)), where R(n,d) = (Product_{j prime to d} Pochhammer(j/d, n)) / n!.

Original entry on oeis.org

1, 2, 20, 1120, 30800, 1121120, 152472320, 8277068800, 523524601600, 340290991040000, 27631628472448000, 2491870494969856000, 741331472253532160000, 80177849999112785920000, 9392262428467497779200000, 3554032102932101159649280000, 480238587908700169197608960000
Offset: 0

Views

Author

Peter Luschny, Jun 06 2016

Keywords

Comments

Also the numerators of the nonzero coefficients in the expansion of hypergeom([Seq_{k=1..m-1} k/m], [], (x/m)^m) for m = 3.

Crossrefs

R(n, 1) = A000012 / A000012.
R(n, 2) = A001790 / A046161.
R(n, 3) = (this sequence) / A344402.

Programs

  • Maple
    Hlist := proc(m,size) local H, S;
    H := m -> hypergeom([seq(k/m, k=1..m-1)], [], (x/m)^m);
    S := m -> series(H(m), x, (m+1)*size);
    seq(numer(coeff(S(m), x, m*n)), n=0..size) end:
    A273194_list := size -> Hlist(3, size);
    # Alternative:
    coprimes := n -> select(j -> igcd(j, n) = 1, {$1..n}):
    R := (n, d) -> mul(pochhammer(j/d, n), j in coprimes(d)) / n!:
    seq(numer(R(n, 3)), n = 0..16); # Peter Luschny, May 20 2021

A276814 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space angular velocity.

Original entry on oeis.org

-3, -4, 6, -5, 22, -30, -6, 36, 16, -168, 192, -7, 54, 46, -294, -266, 1428, -1386, -8, 76, 64, -480, 30, -832, 2560, -128, 3520, -12800, 10752, -9, 102, 86, -738, 78, -1260, 4356, -594, -558, 11484, -23166, 3564, -42900, 118404, -87516, -10, 132, 112, -1080, 100, -1840, 7040, 48, -1680, -800, 18240, -40320, -760, 8640
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The phase space trajectory of A276738 has one time dependent variable, the phase space angle "x" defined as Tan[x]=p/q. Then dx/dt = cos[x]^2* d/dt(p/q), which can be written as a function of Q=cos[x] by application of the classical equations of motion d/dt(p,q) = ( -d/dq H, d/dp H ), with H the anharmonic oscillator Hamiltonian. Substituting the result of A276738 and expanding in powers of b, we obtain dx/dt = -1 + sum b^n*T(n,m)*f(n,m); where the sum runs over n=1,2,3... and m = 1,2,3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. Observe the limit where Q --> 0, dx/dt --> -1, the harmonic oscillator value. Similarly if v_i --> 0 then dx/dt --> -1.

Examples

			n/m  1    2     3     4     5     6      7
---------------------------------------------
1  | -3
2  | -4,  6
3  | -5,  22,  -30
4  | -6,  36,   16,  -168   192
5  | -7,  54,   46,  -294  -266   1428  -1386
---------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{xd = xDot[10]},TriangleRow[#, xd] /. v[_] -> 0 & /@ Range[10]]

A276815 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential time dependence.

Original entry on oeis.org

3, 4, -24, 5, -70, 210, 6, -96, -48, 960, -1920, 7, -126, -126, 1386, 1386, -12012, 18018, 8, -160, -160, 1920, -80, 3840, -17920, 640, -26880, 143360, -172032, 9, -198, -198, 2574, -198, 5148, -25740, 2574, 2574, -77220, 218790, -25740, 437580, -1662804, 1662804, 10, -240, -240, 3360, -240, 6720, -35840, -120, 6720, 3360
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814, which allows expansion of dt = dx /(dx/dt) = dx(-1 + sum b^n*T(n,m)*f(n,m)); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. To obtain period K, we integrate the function of Q=cos[x] over a range of [2*pi,0]. All odd powers of Q integrate to zero, so the period is an expansion in E=(1/2)*b^2 (Cf. A276816). This sequence transforms into A274076/A274078 by setting v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4      5      6      7
------------------------------------------------
1  | 3
2  | 4   -24
3  | 5   -70    210
4  | 6   -96   -48   960   -1920
5  | 7   -126  -126  1386   1386  -12012  18018
------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    dt[n_] := Expand[Normal@Series[1/xDot[n], {b, 0, n}]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{dt10 = dt[10]}, TriangleRow[#, dt10] /. v[_] -> 0 & /@ Range[10]]

A277233 Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.

Original entry on oeis.org

1, 5, 89, 381, 25609, 106405, 1755841, 7207405, 1886504905, 7693763645, 125233642041, 508710104205, 33014475398641, 133748096600189, 2165115508033649, 8754452051708621, 9054883309760265929, 36559890613417481741, 590105629859261338481, 2379942639329101454549
Offset: 0

Views

Author

Wolfdieter Lang, Nov 12 2016

Keywords

Comments

This is the instance m=1/2 of the partial sums r(m,n) = Sum_{k=0..n} (risefac(m,k)/ k!)^2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1.
The limit n -> oo does not exist. It would be hypergeometric([1/2,1/2],[1],z -> 1), which diverges.
The partial sums of the cubes converge for |m| < 2/3. See Morley's series under A277232 (for m=1/2).
a(n)/A056982(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019

Examples

			The rationals r(n) begin: 1, 5/4, 89/64, 381/256, 25609/16384, 106405/65536, 1755841/1048576, 7207405/4194304, 1886504905/1073741824, 7693763645/4294967296, ...
		

Crossrefs

Programs

  • Maple
    a := n -> numer(add(binomial(-1/2, j)^2, j=0..n));
    seq(a(n), n=0..19); # Peter Luschny, Sep 26 2019
    # Alternatively:
    G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
    [seq(coeff(ser,x,n), n=0..19)]: numer(%); # Peter Luschny, Sep 28 2019
  • Mathematica
    Accumulate[CoefficientList[Series[1/Sqrt[1-x],{x,0,20}],x]^2]//Numerator (* Harvey P. Dale, Feb 10 2019 *)
    G[x_] := (2 EllipticK[x])/(Pi (1 - x));
    CoefficientList[Series[G[x], {x, 0, 19}], x] // Numerator (* Peter Luschny, Sep 28 2019 *)
  • SageMath
    def A277233(n):
        return sum((A001790(k)*(2^(A005187(n) - A005187(k))))^2 for k in (0..n))
    print([A277233(n) for n in (0..19)]) # Peter Luschny, Sep 30 2019

Formula

a(n) = numerator(r(n)), with the fractional
r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^2;
r(n) = Sum_{k=0..n} (binomial(-1/2,k))^2;
r(n) = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^2.
The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
r(n) ~ (log(n+3/4) + EulerGamma + 4*log(2))/Pi. - Peter Luschny, Sep 27 2019
Rational generating function: (2*K(x))/(Pi*(1-x)) where K is the complete elliptic integral of the first kind. - Peter Luschny, Sep 28 2019
a(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2. - Peter Luschny, Sep 30 2019

A144815 Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 3, -1, 15, -5, 3, 35, -35, 21, -5, 315, -105, 189, -45, 35, 693, -1155, 693, -495, 385, -63, 3003, -3003, 9009, -2145, 5005, -819, 231, 6435, -15015, 27027, -32175, 25025, -12285, 3465, -429, 109395, -36465, 153153, -109395, 425425, -69615, 58905, -7293, 6435
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Comments

All even coefficients of t_n have to be 0, because t_n is defined to be point-symmetric with respect to the origin, with vanishing n-th derivative for x=1.
A sigmoidal transfer function sigma_n: R->[ -1,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = t_n(x) if x in [ -1,1] and sigma_n(x) = -1 if x<-1.

Examples

			1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816
As triangle:
    1;
    3/2,     -1/2;
   15/8,     -5/4,    3/8;
   35/16,   -35/16,  21/16,  -5/16;
  315/128, -105/32, 189/64, -45/32, 35/128;
  ...
		

Crossrefs

Denominators of T(n,k): A144816.
Column k=0 gives A001803.
Diagonal gives (-1)^n A001790(n).

Programs

  • Maple
    t:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..10);
  • Mathematica
    row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)
    Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2,1-n,3/2,x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)),x^2]],{n,1,9}]] (* Eugeniy Sokol, Aug 20 2019 *)

Formula

See program.

A101681 Numbers k such that gcd(C(2k,k), 2k+1) > 1.

Original entry on oeis.org

7, 16, 17, 19, 22, 25, 31, 34, 38, 42, 43, 45, 46, 47, 49, 52, 55, 58, 61, 64, 67, 70, 71, 72, 73, 76, 77, 79, 80, 82, 87, 88, 92, 93, 94, 97, 100, 102, 103, 104, 106, 107, 110, 112, 115, 117, 122, 123, 124, 127, 129, 130, 133, 136, 139, 142, 143, 145, 147, 148
Offset: 1

Views

Author

Ralf Stephan, Dec 11 2004

Keywords

Comments

Positions where A056616 differs from A000984.
The set seems to have greater cardinality than its complement.
Positions where A055786 differs from A001790. - Mohammed Yaseen, Aug 03 2024

Examples

			7 is in the sequence as gcd(binomial(2*7, 7), 2*7 + 1) = gcd(3432, 15) = gcd(3*1144, 3*5) > 1. - _David A. Corneth_, Apr 03 2021
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],GCD[Binomial[2 #,#],2 #+1]>1&] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    is(n) = { my(f = factor(2*n+1)); for(i = 1, #f~, if(val(2*n, f[i, 1])-2*val(n, f[i, 1]) > 0, return(1))); 0 }
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Apr 03 2021

A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).

Original entry on oeis.org

1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.

Examples

			Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
		

References

  • Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.

Crossrefs

Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).

Programs

  • Julia
    bitcount(n) = sum(digits(n, base=2))
    a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
  • Mathematica
    a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n,n))^2); \\ Michel Marcus, Aug 11 2019
    

Formula

a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.

Extensions

New name by Peter Luschny, Oct 01 2019
Previous Showing 51-60 of 79 results. Next