A162440
The pg(n) sequence that is associated with the Eta triangle A160464.
Original entry on oeis.org
2, 16, 144, 4608, 115200, 4147200, 203212800, 26011238400, 2106910310400, 210691031040000, 25493614755840000, 3671080524840960000, 620412608698122240000, 121600871304831959040000
Offset: 2
The first few generating functions GFE(z;n) are:
GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2,
GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16,
GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144.
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle
A160464.
The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to
A008955.
The r(n) sequence equals
A062383(n) (n>=1).
The e(n) sequence equals
A029837(n) (n>=1).
-
nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax);
# End program 1
nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od;
# End program 2 (Edited by Johannes W. Meijer, Sep 21 2012)
A163590
Odd part of the swinging factorial A056040.
Original entry on oeis.org
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195, 9917826435, 583401555, 20419054425, 2268783825
Offset: 0
11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 3^2*7*11 = 2772/4 = 693.
From _Anthony Hernandez_, Feb 04 2019: (Start)
a(7) = numerator((1*3*5*7)/(2*4*6)) = 35;
a(8) = numerator((1*3*5*7)/(2*4*6*8)) = 35;
a(9) = numerator((1*3*5*7*9)/(2*4*6*8)) = 315;
a(10) = numerator((1*3*5*7*9)/(2*4*6*8*10)) = 63. (End)
-
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
a := n -> swing(n)/sigma(n);
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/ f!]; a[n_] := With[{s = sf[n]}, s/2^IntegerExponent[s, 2]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)
r[n_] := (n - Mod[n - 1, 2])!! /(n - 1 + Mod[n - 1, 2])!! ;
Table[r[n], {n, 0, 36}] // Numerator (* Peter Luschny, Mar 01 2020 *)
-
A163590(n) = {
my(a = vector(n+1)); a[1] = 1;
for(n = 1, n,
a[n+1] = a[n]*n^((-1)^(n+1))*2^valuation(n, 2));
a } \\ Peter Luschny, Sep 29 2019
-
# uses[A000120]
@CachedFunction
def swing(n):
if n == 0: return 1
return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
A163590 = lambda n: swing(n)/2^A000120(n//2)
[A163590(n) for n in (0..31)] # Peter Luschny, Nov 19 2012
# Alternatively:
-
@cached_function
def A163590(n):
if n == 0: return 1
return A163590(n - 1) * n^((-1)^(n + 1)) * 2^valuation(n, 2)
print([A163590(n) for n in (0..31)]) # Peter Luschny, Sep 29 2019
A001800
Coefficients of Legendre polynomials.
Original entry on oeis.org
1, 3, 30, 70, 315, 693, 12012, 25740, 109395, 230945, 1939938, 4056234, 16900975, 35102025, 1163381400, 2404321560, 9917826435, 20419054425, 167890003050, 344616322050, 1412926920405, 2893136075115, 47342226683700, 96742811049300, 395033145117975
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Legendre Polynomial, eq. 28.
-
A001800:= func< n | (n+1)*(n+2)*Catalan(n+1)/2^(&+Intseq(n+2, 2)) >;
[A001800(n): n in [0..30]]; // G. C. Greubel, Apr 25 2025
-
wt:= proc(n) local m, r; m:=n; r:=0;
while m>0 do r:= r+irem(m, 2, 'm') od; r
end:
a:= n-> (n+1) *binomial(2*n+2, n+1)/2^wt(n+2):
seq(a(n), n=0..30); # Alois P. Heinz, May 29 2013
-
a[n_] := (n+1)*Binomial[2*n+2, n+1]/2^DigitCount[n+2, 2, 1]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 13 2014 *)
-
a(n)=if(n<0,0,-polcoeff(pollegendre(n+2),n)*2^valuation((n\2*2)!,2))
-
def A001800(n): return (n+1)*binomial(2*n+2,n+1)//2^sum((n+2).digits(2))
print([A001800(n) for n in range(31)]) # G. C. Greubel, Apr 25 2025
A002011
a(n) = 4*(2n+1)!/n!^2.
Original entry on oeis.org
4, 24, 120, 560, 2520, 11088, 48048, 205920, 875160, 3695120, 15519504, 64899744, 270415600, 1123264800, 4653525600, 19234572480, 79342611480, 326704870800, 1343120024400, 5513861152800, 22606830726480, 92580354403680, 378737813469600
Offset: 0
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(2*n*binomial(2*n,n), n=1..23); # Zerinvary Lajos, Dec 14 2007
-
Table[4*(2*n + 1)!/n!^2, {n, 0, 20}] (* T. D. Noe, Aug 30 2012 *)
-
a(n)=if(n<0,0,4*(2*n+1)!/n!^2)
Simpler description from Travis Kowalski (tkowalski(AT)coloradocollege.edu), Mar 20 2003
A086116
Numerator of mean deviation of a symmetrical binomial distribution on n elements.
Original entry on oeis.org
1, 1, 3, 3, 15, 15, 35, 35, 315, 315, 693, 693, 3003, 3003, 6435, 6435, 109395, 109395, 230945, 230945, 969969, 969969, 2028117, 2028117, 16900975, 16900975, 35102025, 35102025, 145422675, 145422675, 300540195, 300540195, 9917826435
Offset: 1
-
Numerator[Table[If[OddQ[n], n!!/2/(n-1)!!, (n-1)!!/2/(n-2)!! ], {n, 50}]]
A173384
a(n) = 2^(2*n - HammingWeight(n)) * [x^n] ((x-1)^(-1) + (1-x)^(-3/2)).
Original entry on oeis.org
0, 1, 7, 19, 187, 437, 1979, 4387, 76627, 165409, 707825, 1503829, 12706671, 26713417, 111868243, 233431331, 7770342787, 16124087129, 66765132341, 137948422657, 1138049013461, 2343380261227, 9636533415373, 19787656251221
Offset: 0
From _Anthony Hernandez_, Feb 05 2020: (Start)
Consider n = 4. The 4th odd number is 7, and 7!!/(7-1)!! = 35/16, and a(4-1) = a(3) = 35 - 16 = 19.
Consider n = 7. The 7th odd number is 13, and 13!!/(13-1)!! = 3003/1024, and a(7-1) = a(6) = 3003 - 1024 = 1979. (End)
-
List([0..30], n-> (NumeratorRat((2*n+1)*Binomial(2*n, n)/(4^n)) - DenominatorRat(Binomial(2*n, n)/(4^n)))); # G. C. Greubel, Dec 09 2018
-
[Numerator((2*n+1)*Binomial(2*n, n)/(4^n)) - Denominator(Binomial(2*n, n)/(4^n)): n in [0..30]]; // G. C. Greubel, Dec 09 2018
-
A046161 := proc(n) binomial(2*n,n)/4^n ; denom(%) ; end proc:
A173384 := proc(n) A001803(n)-A046161(n) ; end proc: # R. J. Mathar, Jul 06 2011
-
Table[Numerator[(2*n+1)*Binomial[2*n, n]/(4^n)] - Denominator[Binomial[2*n, n]/(4^n)], {n,0,30}] (* G. C. Greubel, Dec 09 2018 *)
A173384[n_] := 2^(2*n - DigitCount[n, 2, 1]) Coefficient[Series[(x - 1)^(-1) + (1 - x)^(-3/2), {x, 0, n}], x, n]
Table[A173384[n], {n, 0, 23}] (* Peter Luschny, Feb 17 2024 *)
-
for(n=0,30, print1(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, Dec 09 2018
-
[(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/(4^n))) for n in range(30)] # G. C. Greubel, Dec 09 2018
A036069
Denominator of rational part of Haar measure on Grassmannian space G(n,1).
Original entry on oeis.org
1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
Offset: 0
1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
- D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
-
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
-
Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)
A277233
Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.
Original entry on oeis.org
1, 5, 89, 381, 25609, 106405, 1755841, 7207405, 1886504905, 7693763645, 125233642041, 508710104205, 33014475398641, 133748096600189, 2165115508033649, 8754452051708621, 9054883309760265929, 36559890613417481741, 590105629859261338481, 2379942639329101454549
Offset: 0
The rationals r(n) begin: 1, 5/4, 89/64, 381/256, 25609/16384, 106405/65536, 1755841/1048576, 7207405/4194304, 1886504905/1073741824, 7693763645/4294967296, ...
- Seiichi Manyama, Table of n, a(n) for n = 0..831
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the Hathi Trust Digital Library.]
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung), Arch. Math. Phys. 21 (1913), 250-255. [Accessible in the USA through the Hathi Trust Digital Library.]
- Cristinel Mortici, Sharp bounds of the Landau constants, Math. Comp. 80 (2011), pp. 1011-1018.
- G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318.
-
a := n -> numer(add(binomial(-1/2, j)^2, j=0..n));
seq(a(n), n=0..19); # Peter Luschny, Sep 26 2019
# Alternatively:
G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
[seq(coeff(ser,x,n), n=0..19)]: numer(%); # Peter Luschny, Sep 28 2019
-
Accumulate[CoefficientList[Series[1/Sqrt[1-x],{x,0,20}],x]^2]//Numerator (* Harvey P. Dale, Feb 10 2019 *)
G[x_] := (2 EllipticK[x])/(Pi (1 - x));
CoefficientList[Series[G[x], {x, 0, 19}], x] // Numerator (* Peter Luschny, Sep 28 2019 *)
-
def A277233(n):
return sum((A001790(k)*(2^(A005187(n) - A005187(k))))^2 for k in (0..n))
print([A277233(n) for n in (0..19)]) # Peter Luschny, Sep 30 2019
A093581
Numerators of odd moments in the distribution of chord lengths for picked at random on the circumference of a unit circle.
Original entry on oeis.org
4, 32, 512, 4096, 131072, 1048576, 16777216, 134217728, 8589934592, 68719476736, 1099511627776, 8796093022208, 281474976710656, 2251799813685248, 36028797018963968, 288230376151711744
Offset: 1
1, 4/Pi, 2, 32/(3*Pi), 6, 512/(15*Pi), 20, 4096/(35*Pi), ...
-
A093581:= func< n | Power(2, 4*n-2-(&+Intseq(2*(n-1), 2))) >;
[A093581(n): n in [1..30]]; // G. C. Greubel, Oct 20 2024
-
Table[Power[2, 4*n-2 - DigitCount[n-1,2,1]], {n, 30}] (* G. C. Greubel, Oct 20 2024 *)
-
def A093581(n): return pow(2, 4*n-2 - sum((2*n-2).digits(2)))
[A093581(n) for n in range(1,31)] # G. C. Greubel, Oct 20 2024
A144815
Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.
Original entry on oeis.org
1, 3, -1, 15, -5, 3, 35, -35, 21, -5, 315, -105, 189, -45, 35, 693, -1155, 693, -495, 385, -63, 3003, -3003, 9009, -2145, 5005, -819, 231, 6435, -15015, 27027, -32175, 25025, -12285, 3465, -429, 109395, -36465, 153153, -109395, 425425, -69615, 58905, -7293, 6435
Offset: 0
1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816
As triangle:
1;
3/2, -1/2;
15/8, -5/4, 3/8;
35/16, -35/16, 21/16, -5/16;
315/128, -105/32, 189/64, -45/32, 35/128;
...
-
t:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..10);
-
row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)
Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2,1-n,3/2,x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)),x^2]],{n,1,9}]] (* Eugeniy Sokol, Aug 20 2019 *)
Comments