cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 529 results. Next

A253905 Decimal expansion of zeta(3)/zeta(2).

Original entry on oeis.org

7, 3, 0, 7, 6, 2, 9, 6, 9, 4, 0, 1, 4, 3, 8, 4, 9, 8, 7, 2, 6, 0, 3, 6, 7, 3, 1, 3, 0, 7, 7, 1, 4, 6, 3, 9, 5, 2, 8, 0, 1, 1, 6, 0, 5, 0, 7, 9, 3, 7, 4, 4, 7, 0, 0, 7, 1, 3, 2, 5, 3, 5, 6, 6, 1, 6, 9, 0, 7, 6, 3, 0, 6, 7, 8, 4, 8, 5, 5, 6, 8, 2, 6, 7, 0, 7, 0, 0, 3, 7, 1, 4, 0, 9, 8, 7, 9, 0, 3, 2, 8, 8, 6, 5
Offset: 0

Views

Author

Geoffrey Critzer, Jan 18 2015

Keywords

Comments

Three positive integers b, c, m are randomly selected (with replacement) from {1, 2, ..., n}. Let P(n) be the probability that the congruence b * x == c (mod m) has a solution. zeta(3)/zeta(2) is the limit of P(n) as n goes to infinity.

Examples

			0.73076296940143849872603673130771463952801160507937...
		

Crossrefs

Programs

  • Mathematica
    Drop[Flatten[RealDigits[N[Zeta[3]/Zeta[2], 75]]], -2]
  • PARI
    zeta(3)/zeta(2) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals Product_{p prime} (1 - 1/(p^2 + p + 1)). - Amiram Eldar, Jun 11 2023
Equals Sum_{k>=1} A023900(k)/k^3. - Amiram Eldar, Jan 25 2024

A255269 a(n) = Product_{k=1..n} k!^k.

Original entry on oeis.org

1, 4, 864, 286654464, 7132880358604800000, 993710590042385551668019200000000000, 82086865668400428790437436119503664712777728000000000000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!^k,{k,1,n}],{n,1,10}]
    FoldList[Times,Table[(k!)^k,{k,10}]] (* Harvey P. Dale, Aug 16 2021 *)

Formula

a(n) = A255268(n) / A055462(n-1).
a(n) ~ sqrt(A) * exp((3 - 45*n^2 - 32*n^3 - 9*Zeta(3)/Pi^2)/72) * n^((8*n^3 + 18*n^2 + 10*n + 1)/24) * (2*Pi)^(n*(n+1)/4), where A = A074962 = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.2020569031595942853997... .

A062775 Number of Pythagorean triples mod n: total number of solutions to x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 4, 9, 24, 25, 36, 49, 96, 99, 100, 121, 216, 169, 196, 225, 448, 289, 396, 361, 600, 441, 484, 529, 864, 725, 676, 891, 1176, 841, 900, 961, 1792, 1089, 1156, 1225, 2376, 1369, 1444, 1521, 2400, 1681, 1764, 1849, 2904, 2475, 2116, 2209, 4032, 2695, 2900
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001

Keywords

Comments

a(n) is multiplicative and, for a prime p, a(p) = p^2. Hence a(n) = n^2 if n is squarefree.

Crossrefs

Cf. A091143 (number of solutions to x^2 + y^2 = z^2 mod 2^n).
Number of solutions to x^k + y^k = z^k mod n: this sequence (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • Maple
    A062775 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                if type(e,'odd') then
                    a := a*p^((3*e+1)/2)*(2^((e+1)/2)-1) ;
                else
                    a := a*p^(3*e/2)*(2^(e/2+1)-1) ;
                end if;
            else
                if type(e,'odd') then
                    a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
                else
                    a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A062775(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    Table[cnt=0; Do[If[Mod[x^2+y^2-z^2, n]==0, cnt++ ], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[OddQ[e], p^(3*(e+1)/2 - 2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1) * (p^(e/2 + 1) + p^(e/2) - 1)]; f[2, e_] := If[OddQ[e], 2^(3*(e+1)/2 - 1)*(2^((e+1)/2) - 1), 2^(3*e/2)*(2^(e/2+1)-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)

Formula

a(n) is multiplicative. For the powers of primes p, there are four cases. For p=2, there are cases for even and odd powers: a(2^(2k-1)) = 2^(3k-1) (2^k-1) and a(2^(2k)) = 2^(3k) (2^(k+1)-1). Similarly, for odd primes p, a(p^(2k-1)) = p^(3k-2) (p^k+p^(k-1)-1) and a(p^(2k)) = p^(3k-1) (p^(k+1)+p^k-1). - T. D. Noe, Dec 22 2003
From Gottfried Helms, May 13 2004: (Start)
If the canonical form of n is n = 2^i * 3^j * 5^k *... * p^q, then it appears that a(n) = n * f(2, i) * f(3, j) * f(5, k) * ... * f(p, q), where f(p, 1) = p for any prime p; f(2, i) = 2^i + 2^i - 2^ceiling(i/2); f(p, i) = p^i + p^(i-1) - p^floor((i-1)/2) for any odd prime p.
For example, a(7) = 49 because a(7) = 7*f(7, 1) = 7*7; a(16) = 448 because a(16) = a(2^4) = 16 * f(2, 4) = 16 * (16+16-4) = 16*28 = 448; a(12) = 216 because a(12) = a(3*2^2) = 12*f(2, 2)*f(3, 1) = 12*(4+4-2)*3 = 216. (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/45) * Product_{p prime} (1 + 1/(p^3 + p^2 + p)) = (16/45)*zeta(3)/zeta(4) = 0.39488943478263044166... . - Amiram Eldar, Oct 18 2022, Nov 30 2023

Extensions

More terms from Sascha Kurz, Mar 25 2002

A067558 Sum of squares of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 5, 1, 14, 1, 21, 10, 30, 1, 66, 1, 54, 35, 85, 1, 131, 1, 146, 59, 126, 1, 274, 26, 174, 91, 266, 1, 400, 1, 341, 131, 294, 75, 615, 1, 366, 179, 610, 1, 736, 1, 626, 341, 534, 1, 1106, 50, 755, 299, 866, 1, 1184, 147, 1114, 371, 846, 1, 1860, 1, 966, 581, 1365
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 29 2002

Keywords

Examples

			a(12) = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 = 1 + 4 + 9 + 16 + 36 = 66.
		

Crossrefs

Programs

Formula

a(n) = A001157(n) - n^2.
a(n) = 1 if and only if n is prime.
Dirichlet g.f.: zeta(s-2)*(zeta(s) - 1). - Ilya Gutkovskiy, Sep 08 2016
Sum_{k=1..n} a(k) ~ (zeta(3)-1) * n^3 / 3. - Amiram Eldar, Dec 31 2024

A152651 Decimal expansion of 3*Zeta(5) - Zeta(3)*Pi^2/6.

Original entry on oeis.org

1, 1, 3, 3, 4, 7, 8, 9, 1, 5, 1, 3, 2, 8, 1, 3, 6, 6, 0, 7, 9, 7, 0, 1, 1, 0, 1, 7, 8, 8, 5, 9, 7, 6, 9, 3, 2, 0, 8, 9, 0, 9, 1, 2, 9, 1, 8, 4, 5, 6, 0, 4, 2, 2, 7, 2, 2, 6, 7, 5, 5, 7, 5, 6, 6, 5, 6, 6, 9, 5, 7, 3, 5, 2, 1, 2, 2, 4, 0, 2, 4, 5, 9, 7, 7, 7, 4, 4, 9, 4, 7, 1, 4, 9, 6, 5, 0, 4, 0, 1, 7, 6, 6, 7, 6
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2008

Keywords

Comments

A division by 2 is missing in Mezo's penultimate formula on page 4.

Examples

			Equals 1.1334789151328136607970110178859769320890912918456042272...
		

Programs

  • Mathematica
    RealDigits[3*Zeta[5]-Zeta[3]*Pi^2/6,10,120][[1]] (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    3*zeta(5) - zeta(3)*Pi^2/6 \\ Michel Marcus, Jul 07 2015

Formula

Equals Sum_(j >= 1) H(j)/j^4 = where H(j) = A001008(j)/A002805(j).
Equals 3*A013663 - A002117*A013661.

A255835 G.f.: Product_{k>=1} (1+x^k)^(2*k-1).

Original entry on oeis.org

1, 1, 3, 8, 15, 34, 67, 133, 255, 486, 901, 1649, 2984, 5312, 9373, 16342, 28221, 48283, 81928, 137858, 230278, 381919, 629156, 1029933, 1675856, 2711288, 4362575, 6983196, 11122327, 17630798, 27820283, 43706461, 68375137, 106534093, 165340844, 255643289
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) - Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2 * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018

A002760 Squares and cubes.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Keywords

Comments

Catalan's Conjecture states that 8 and 9 are the only pair of consecutive numbers in this sequence. The conjecture was established in 2003 by Mihilescu.
Subsequence of A022549. - Reinhard Zumkeller, Jul 17 2010

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.

Crossrefs

Cf. A131799; union of A000290 and A000578.
First differences in A075052. [From Zak Seidov, May 10 2010]

Programs

  • Magma
    [n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016
    
  • Mathematica
    nMax=2000;Union[Range[0,nMax^(1/2)]^2,Range[0,nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
    nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)
  • PARI
    isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot
    def A002760(n):
        def f(x): return n-1+x+integer_nthroot(x,6)[0]-integer_nthroot(x,3)[0]-isqrt(x)
        m, k = n-1, f(n-1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 09 2024

Formula

Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020

A006501 Expansion of (1+x^2) / ( (1-x)^2 * (1-x^3)^2 ).

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 150, 180, 216, 252, 294, 343, 392, 448, 512, 576, 648, 729, 810, 900, 1000, 1100, 1210, 1331, 1452, 1584, 1728, 1872, 2028, 2197, 2366, 2548, 2744, 2940, 3150, 3375, 3600, 3840, 4096, 4352, 4624, 4913, 5202
Offset: 0

Views

Author

Keywords

Comments

a(n+3) = maximal product of three numbers with sum n: a(n) = max(r*s*t), n = r+s+t. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 10 2003
It appears that k is a term of the sequence if and only if k is a positive integer such that floor(v) * ceiling(v) * round(v) = k, where v = k^(1/3). - John W. Layman, Mar 21 2012
The sequence floor(n/3)*floor((n+1)/3)*floor((n+2)/3) is essentially the same: 0, 0, 0, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 150, 180, 216, 252, ... - N. J. A. Sloane, Dec 27 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), this sequence (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • Maple
    A006501:=(1+z**2)/(z**2+z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-x)^2 /(1-x^3)^2,{x,0,50}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = [(n+3)/3] * [(n+4)/3] * [(n+5)/3]. - Reinhard Zumkeller, May 18 2004
a(n-3) = Sum_{k=0..n} [k/3]*[(k+1)/3]. - Mitch Harris, Dec 02 2004
Conjecture: a(n) = A144677(n) + A144677(n-2). - R. J. Mathar, Mar 15 2011
Sum_{n>=0} 1/a(n) = 1 + zeta(3). - Amiram Eldar, Jan 10 2023
a(3*m) = (m+1)^3 (A000578). - Bernard Schott, Feb 22 2023

Extensions

More terms from Reinhard Zumkeller, May 18 2004

A091360 Partial sums of A000219.

Original entry on oeis.org

1, 2, 5, 11, 24, 48, 96, 182, 342, 624, 1124, 1983, 3462, 5947, 10114, 16993, 28290, 46624, 76225, 123555, 198833, 317627, 504102, 794885, 1246079, 1942112, 3010857, 4643515, 7126749, 10886361, 16555324, 25067633, 37801062, 56776035, 84951990, 126643036, 188127997, 278507781, 410949776, 604437277, 886284200, 1295668181
Offset: 0

Views

Author

Christian G. Bower, Jan 02 2004

Keywords

Comments

Convergent of columns of A091355.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^k,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec( 1/((1-x)*prod(n=1,N, (1-x^n)^n )) ) \\ Joerg Arndt, Mar 15 2014

Formula

Euler transform of 2, 2, 3, 4, 5, 6, 7, 8, 9, ...
G.f.: 1/( (1-x) * prod(n>=1, (1-x^n)^n ) ). [Joerg Arndt, Mar 15 2014]
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) = Sum_{k=0..n} A000219(k).
a(n) ~ (n/(2*Zeta(3)))^(1/3) * A000219(n).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * sqrt(3*Pi) * Zeta(3)^(5/36) * n^(13/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
(End)
G.f.: exp(Sum_{k>=1} (sigma_2(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018

A206622 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^2).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1148, 3376, 9654, 26894, 73192, 195188, 510948, 1315048, 3332720, 8326448, 20529526, 49998884, 120379574, 286726340, 676057144, 1578880480, 3654180236, 8385122192, 19085029540, 43103203626, 96630606968, 215105226728, 475608824400
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Comments

Compare g.f. to: Product_{n>0} (1+x^n)/(1-x^n) = exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ) which equals 1/theta_4(x) = 1/(1 + 2*Sum_{n>=1} (-x)^(n^2)).
Convolution of A023871 and A027998. - Vaclav Kotesovec, Aug 19 2015
In general, if g.f. = Product_{k>=1} ((1 + x^k)/(1 - x^k))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi * 2^(5/4) * c2^(1/4) * n^(3/4) / 3 + 7*c1 * Zeta(3) * sqrt(n) / (Pi^2 * sqrt(2*c2)) + (c0*Pi / (2^(5/4) * c2^(1/4)) - 49*c1^2 * Zeta(3)^2 / (2^(5/4) * c2^(5/4) * Pi^5)) * n^(1/4) + 22411 * c1^3 * Zeta(3)^3 / (196 * c2^2 * Pi^8) - 7*c0*c1 * Zeta(3) / (4*c2 * Pi^2) - c2 * Zeta(3) / (4*Pi^2) + c1/12) * Pi^(c1/12) * c2^(1/8 + c0/8 + c1/48) / (A^c1 * 2^(15/8 + 11*c0/8 + 7*c1/48) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) denote the g.f. and let m be an integer. Define a sequence by u(n) = [x^n] A(x)^(m*n). We conjecture that the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) holds for all positive integers n and r and all primes p >= 5. Cf. A380582. - Peter Bala, Jan 21 2025

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 36*x^3 + 118*x^4 + 376*x^5 + 1148*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^4/(1-x^2)^4 * (1+x^3)^9/(1-x^3)^9 *...
Also, A(x) = Euler transform of [2,7,18,28,50,63,98,112,162,175,...]:
A(x) = 1/((1-x)^2*(1-x^2)^7*(1-x^3)^18*(1-x^4)^28*(1-x^5)^50*(1-x^6)^63*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^2)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 3)-sigma(m, 3))/4*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+7*x+12*x^2+7*x^3+2*x^4)/(1-x^2+x*O(x^n))^3);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_3(2*n) - sigma_3(n))/4 * x^n/n ), where sigma_3(n) is the sum of cubes of divisors of n (A001158).
The inverse Euler transform has g.f.: x*(2 + 7*x + 12*x^2 + 7*x^3 + 2*x^4)/(1-x^2)^3.
a(n) ~ exp(2^(5/4)*Pi*n^(3/4)/3 - Zeta(3)/(4*Pi^2)) / (2^(15/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A007331(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017
Previous Showing 51-60 of 529 results. Next