cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 148 results. Next

A124733 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,3,3,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 15, 21, 8, 1, 51, 86, 46, 11, 1, 188, 355, 235, 80, 14, 1, 731, 1488, 1140, 489, 123, 17, 1, 2950, 6335, 5397, 2730, 875, 175, 20, 1, 12235, 27352, 25256, 14462, 5530, 1420, 236, 23, 1, 51822, 119547, 117582, 74172, 32472, 10026, 2151, 306, 26, 1
Offset: 1

Views

Author

Keywords

Comments

With a different offset: Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+3*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
Equals A007318*A039599 (when written as lower triangular matrix). - Philippe Deléham, Jun 16 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 odd integers). Example: 5^4 = 625 = (51, 86, 46, 11, 1) dot (1, 3, 5, 7, 9) = (51 + 258 + 230 + 77 + 9) = 625. [Gary W. Adamson, Jun 13 2011]

Examples

			Row 3 is (5,5,1) because M[3]=[2,1,0;1,3,1;0,1,3] and M[3]^2=[5,5,1;5,11,6;1,6,10].
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 21, 8, 1;
51, 86, 46, 11, 1;
188, 355, 235, 80, 14, 1;
		

Crossrefs

Cf. A110877, A091965, A002212, A007317, A026375 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 3 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)): seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 2, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-1)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 5^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = ( 1 - sqrt((1 - 5*x)/(1 - x)) )/(2*x) = 1 + 2*x + 5*x^2 + 15*x^3 + 51*x^4 + ... is the o.g.f. of A007317 and g(x) = ( 1 - 3*x - sqrt(1 - 6*x + 5*x^2) )/(2*x^2) = 1 + 3*x + 10*x^2 + 36*x^3 + 137*x^4 + .... See A002212.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 3*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*3^(2*j+k-n). (End)

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A081706 Numbers n such that binary representation ends either in an odd number of ones followed by one zero or in an even number of ones.

Original entry on oeis.org

2, 3, 10, 11, 14, 15, 18, 19, 26, 27, 34, 35, 42, 43, 46, 47, 50, 51, 58, 59, 62, 63, 66, 67, 74, 75, 78, 79, 82, 83, 90, 91, 98, 99, 106, 107, 110, 111, 114, 115, 122, 123, 130, 131, 138, 139, 142, 143, 146, 147, 154, 155, 162, 163, 170, 171, 174, 175, 178, 179, 186
Offset: 1

Views

Author

Emeric Deutsch and Bruce E. Sagan, Apr 02 2003

Keywords

Comments

Values of k such that the Motzkin number A001006(k) is even. Values of k such that the number of restricted hexagonal polyominoes with k+1 cells (A002212) is even.
Or union of sequences {2*A079523(n)+k}, k=0,1. A generalization see in comment to A161639. - Vladimir Shevelev, Jun 15 2009
Or intersection of sequences A121539 and {A121539(n)-1}. A generalization see in comment to A161890. - Vladimir Shevelev, Jul 03 2009
Also numbers n for which A010060(n+2) = A010060(n). - Vladimir Shevelev, Jul 06 2009
The asymptotic density of this sequence is 1/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
Numbers of the form 4^k*(2*n-1)-2 and 4^k*(2*n-1)-1 where n and k are positive integers. - Michael Somos, Oct 22 2021

Crossrefs

Programs

  • Mathematica
    (* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[200], Mod[m[#], 2] == 0 &] (* Jean-François Alcover, Jul 10 2013 *)
    Select[Range[200], EvenQ@Hypergeometric2F1[3/2, -#, 3, 4]&] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    is(n)=valuation(bitor(n,1)+1,2)%2==0 \\ Charles R Greathouse IV, Mar 07 2013
    
  • Python
    from itertools import count, islice
    def A081706_gen(): # generator of terms
        for n in count(0):
            if (n&-n).bit_length()&1:
                m = n<<2
                yield m-2
                yield m-1
    A081706_list = list(islice(A081706_gen(),30)) # Chai Wah Wu, Jan 09 2023
    
  • Python
    def A081706(n):
        def f(x):
            c, s = (n+1>>1)+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1^1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        m, k = n+1>>1, f(n+1>>1)
        while m != k: m, k = k, f(k)
        return (m<<2)-1-(n&1) # Chai Wah Wu, Jan 29 2025

Formula

a(2n-1) = 2*A079523(n) = 4*A003159(n)-2; a(2n) = 4*A003159(n)-1.
Note that a(2n) = 1+a(2n-1).

A097610 Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
Offset: 0

Views

Author

Emeric Deutsch, Aug 30 2004

Keywords

Comments

Row sums are the Motzkin numbers (A001006). Column 0 gives the aerated Catalan numbers (A000108).
Let P_n(x) = Sum_{k=0..n} T(n,k)*x^k. P_0(x) = 1, P_1(x) = x, P_n(x) = x*P_(n-1)(x) + Sum_{j=0..n-2} P_j(x)*P_(n-2-j)(x); essentially the same as A124027. - Philippe Deléham, Oct 03 2007
G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying: p(k, x) = Sum_{j=2..k-1} p(j, x)*p(k-j, x). The coefficients of these polynomials also give (essentially) the triangle shown here. - Roger L. Bagula, Oct 31 2006
Exponential Riordan array [Bessel_I(1,2x)/x,x]. - Paul Barry, Mar 24 2010
Diagonal sums are the aerated large Schroeder numbers. - Paul Barry, Apr 21 2010
Non-vanishing antidiagonals are rows of A060693. - Tom Copeland, Feb 03 2016
These polynomials are related to the Gegenbauer polynomials which in turn are specializations of the Jacobi polynomials. The o.g.f. of the Gegenbauer polynomials is 1 / [1-2tx+x^2]^a. For the generating function Gb(x,h1,h2,a) = [x / (1 + h1 x + h2 x^2)]^a, the compositional inverse in x is Gbinv(x,h1,h2,a) = [(1-h1*y) - sqrt[(1-h1*y)^2-4h2*y^2]]/(2*h2*y) with y = x^(1/a). The polynomials of this entry are generated by Gbinv(x,t,1,1). The Legendre polynomials are related to the o.g.f. Gb(x,-2t,1,1/2). Cf. A121448. - Tom Copeland, Feb 07 2016
The bivariate o.g.f. in Copeland's Jan 29 2016 formulas can be related to conformal mappings of the complex plane and a solution of the dKP hierarchy. Cf. p. 24 of the Takebe et al. paper. - Tom Copeland, May 30 2018

Examples

			Triangle begins:
1;
0,  1;
1,  0,  1;
0,  3,  0,  1;
2,  0,  6,  0,  1;
0, 10,  0, 10,  0,  1;
5,  0, 30,  0, 15,  0,  1;
Row n has n+1 terms.
T(4,2)=6 because we have HHUD, HUDH, UDHH, HUHD, UHDH, UHHD, where U=(1,1), D=(1,-1) and H=(1,0).
		

References

  • G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.

Crossrefs

Cf. A001006, A000108. A124027 is an essentially identical triangle.
Cf. A001263.

Programs

  • Maple
    G:=(1-t*z-sqrt(1-2*t*z+t^2*z^2-4*z^2))/2/z^2:
    Gser:=simplify(series(G,z=0,16)): P[0]:=1:
    for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od:
    seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..13);
    # Maple program for the triangular array:
    T:=proc(n,k) if n-k mod 2 = 0 and k<=n then n!/k!/((n-k)/2)!/((n-k)/2+1)! else 0 fi end: TT:=(n,k)->T(n-1,k-1): matrix(10,10,TT);
  • Mathematica
    T[n_,k_]:=If[n>=k&&EvenQ[n-k],n!/(k!((n-k)/2)!((n-k)/2+1)!),0];
    Flatten[Table[T[n,k],{n,0,20},{k,0,n}]] (* Peter J. C. Moses, Apr 06 2013 *)
    T[n_,k_] := If[OddQ[n - k], 0, Binomial[n, k] CatalanNumber[(n - k)/2]]; (* Peter Luschny, Jun 06 2018 *)

Formula

G.f.: [1-tz-sqrt(1-2tz+t^2*z^2-4z^2)]/(2z^2).
T(n, k) = n!/[k!((n-k)/2)!((n-k)/2-1)! ] = A055151(n, (n-k)/2) if n-k is a nonnegative even number; otherwise T(n, k) = 0.
T(n, k) = C(n, k)*C((n-k)/2)*(1+(-1)^(n-k))/2 if k <= n, 0 otherwise. - Paul Barry, May 18 2005
T(n,k) = A121448(n,k)/2^k. - Philippe Deléham, Aug 17 2006
Sum_{k=0..n} T(n,k)*2^k = A000108(n+1). - Philippe Deléham, Aug 22 2006
Sum_{k=0..n} T(n,k)*3^k = A002212(n+1). - Philippe Deléham, Oct 03 2007
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-x^2/.... (continued fraction). - Paul Barry, Dec 15 2008
Sum_{k=0..n} T(n,k)*4^k = A005572(n). - Philippe Deléham, Dec 03 2009
T(n,k) = A007318(n,k)*A126120(n-k). - Philippe Deléham, Dec 12 2009
From Tom Copeland, Jan 23 2016: (Start)
E.g.f.: M(x,t) = e^(xt) AC(t) = e^(xt) I_1(2t)/t = e(xt) * e.g.f.(A126120(t)) = e^(xt) Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp[t P(.,x)].
The e.g.f. of this Appell sequence of polynomials P(n,x) is e^(xt) times the e.g.f. AC(t) of the aerated Catalan numbers A126120. AC(t) = I_1(2t)/t, where I_n(x) = T_n(d/dx) I_0(x) are the modified Bessel functions of the first kind and T_n, the Chebyshev polynomials of the first kind.
P(n,x) has the lowering and raising operators L = d/dx = D and R = d/dD log{M(x,D)} = x + d/dD log{AC(D)} = x + Sum_{n>=0} c(n) D^(2n+1)/(2n+1)! with c(n) = (-1)^n A180874(n+1), i.e., L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
(P(.,x) + y)^n = P(n,x+y) = Sum_{k=0..n} binomial(n,k) P(k,x) y^(n-k) = (b.+x+y)^n, where (b.)^k = b_k = A126120(k).
Exp(b.D) e^(xt) = exp[(x+b.)t] = exp[P(.,x)t] = e^(b.t) e^(xt) = e^(xt) AC(t).
See p. 12 of the Alexeev et al. link and A055151 for a refinement.
Shifted o.g.f: G(x,t) = [1-tx-sqrt[(1-tx)^2-4x^2]] / 2x = x + t x^2 + (1+t) x^3 + ... has the compositional inverse Ginv(x,t) = x / [1 + tx + x^2] = x - t x^2 +(-1+t^2) x^3 + (2t-t^3) x^4 + (1-3t^2+t^4) x^5 + ..., a shifted o.g.f. for the signed Chebyshev polynomials of the second kind of A049310 (cf. also the Fibonacci polynomials of A011973). Then the inversion formula of A134264, involving non-crossing partitions and free probability with their multitude of interpretations (cf. A125181 also), can be used with h_0 = 1, h_1 = t, and h_2 = 1 to interpret the coefficients of the Motzkin polynomials combinatorially.
(End)
From Tom Copeland, Jan 29 2016: (Start)
Provides coefficients of the inverse of f(x) = x / [1 + h1 x + h2 x^2], a bivariate generating function of A049310 (mod signs).
finv(x) = [(1-h1*x) - sqrt[(1-h1*x)^2-4h2*x^2]]/(2*h2*x) = x + h1 x^2 + (h2 + h1^2) x^3 + (3 h1 h2 + h1^3) x^4 + ... is a bivariate o.g.f. for this entry.
The infinitesimal generator for finv(x) is g(x) d/dx with g(x) = 1 /[df(x)/dx] = x^2 / [(f(x))^2 (1 - h2 x^2)] = (1 + h1 x + h2 x^2)^2 / (1 - h2 x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomials FI(n,h1,h2) of the compositional inverse of f(x), i.e., exp[x g(u)d/du] u |_(u=0) = finv(x) = 1 / [1 -x FI(.,h1,h2)]. Cf. A145271. E.g.,
FI(0,h1,h2) = 0
FI(1,h1,h2) = 1
FI(2,h1,h2) = 1 h1
FI(3,h1,h2) = 1 h2 + 1 h1^2
FI(4,h1,h2) = 3 h2 h1 + 1 h1^3
FI(5,h1,h2) = 2 h2^2 + 6 h2 h1^2 + 1 h1^4
FI(6,h1,h2) = 10 h2^2 h1 + 10 h2 h1^3 + 1 h1^5.
And with D = d/dh1, FI(n+1, h1,h2) = MT(n,h1,h2) = (b.y + h1)^n = Sum_{k=0..n} binomial(n,k) b(k) y^k h1^(n-k) = exp[(b.y D] (h1)^n = AC(y D) (h1)^n, where b(k) = A126120(k), y = sqrt(h2), and AC(t) is defined in my Jan 23 formulas above. Equivalently, AC(y D) e^(x h1) = exp[x MT(.,h1,h2)].
The MT polynomials comprise an Appell sequence in h1 with e.g.f. e^(h1*x) AC(xy) = exp[x MT(.,h1,h2)] with lowering operator L = d/dh1 = D, i.e., L MT(n,h1,h2) = dMT(n,h1,h2)/dh1 = n MT(n-1,h1,h2) and raising operator R = h1 + dlog{AC(y L)}/dL = h1 + Sum_{n>=0} c(n) h2^(n+1) D^(2n+1)/(2n+1)! = h1 + h2 d/dh1 - h2^2 (d/dh1)^3/3! + 5 h2^3 (d/dh1)^5/5! - ... with c(n) = (-1)^n A180874(n+1) (consistent with the raising operator in the Jan 23 formulas).
The compositional inverse finv(x) is also obtained from the non-crossing partitions of A134264 (or A125181) with h_0 = 1, h_1 = h1, h_2 = h2, and h_n = 0 for all other n.
See A238390 for the umbral compositional inverse in h1 of MT(n,h1,h2) and inverse matrix.
(End)
From Tom Copeland, Feb 13 2016: (Start)
z1(x,h1,h2) = finv(x), the bivariate o.g.f. above for this entry, is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,h1,h2),z2(x,h1,h2)) = (z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-h1*x)/(h2*x)] z + 1/h2, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,h1,h2) = (1 - h1*x)/(h2*x) - z1(x,h1,h2) = [1 - h1*x + sqrt[(1-h1*x)^2 - 4 h2*x^2]] / (2h2*x).
The two are the nontrivial zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2), (see Landweber et al., p. 14, Ellingsrud, and A121448), and the zeros for the Riccati equation z' = (z - z1)(z - z2), associated to soliton solutions of the KdV equation (see Copeland link).
(End)
Comparing the shifted o.g.f. S(x) = x / (1 - h_1 x + h_2 x^2) for the bivariate Chebyshev polynomials S_n(h_1,h_2) of A049310 with the shifted o.g.f. H(x) = x / ((1 - a x)(1 - b x)) for the complete homogeneous symmetric polynomials H_n(a,b) = (a^(n+1)-b^(n+1)) / (a - b) shows that S_n(h_1,h_2) = H_n(a,b) for h_1 = a + b and h_2 = ab and, conversely, a = (h_1 + sqrt(h_1^2 - 4 h_2)) / 2 and b = (h_1 - sqrt(h_1^2 - 4 h_2)) / 2. The compositional inverse about the origin of S(x) gives a bivariate o.g.f. for signed Motzkin polynomials M_n(h_1,h_2) of this entry, and that of H(x) gives one for signed Narayana polynomials N_n(a,b) of A001263, thereby relating the bivariate Motzkin and Narayana polynomials by the indeterminate transformations. E.g., M_2(h_1,h_2) = h_2 + h_1^2 = ab + (a + b)^2 = a^2 + 3 ab + b^2 = N_2(a,b). - Tom Copeland, Jan 27 2024

A025230 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 3, with initial terms 3,1.

Original entry on oeis.org

3, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924, 69812926066668044, 523072984217339304
Offset: 1

Views

Author

Keywords

Crossrefs

For Sum_{k = 0..n} m^(n-k)*binomial(n, k)*Catalan(k+1) see A126120 (m = -2), A001006 (m = -1), A000108 (m = 0), A002212 (m = 1), A005572 (m = 2), A182401 (m = 3), A025230 (m = 4).

Programs

  • Maple
    h := n -> simplify(4^n*hypergeom([3/2, -n], [3], -1)):
    a := n -> `if`(n=1, 3, h(n-2)):
    seq(a(n), n=1..21); # Peter Luschny, Feb 03 2015
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-12x+32x^2])/2,{x,0,30}],x]]  (* Harvey P. Dale, Feb 22 2011 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-12*x+32*x^2+x*O(x^n)))/2,n)
    
  • PARI
    {a(n)=if(n<2, 3*(n==1), n--; polcoeff( serreverse( x/(1+6*x+x^2) +x*O(x^n) ), n))} /* Michael Somos, Oct 14 2006 */

Formula

G.f.: (1-sqrt(1-12*x+32*x^2))/2. - Michael Somos, Jun 08 2000
D-finite with recurrence n*a(n) = (12*n-18)*a(n-1) - 32*(n-3)*a(n-2) - Richard Choulet, Dec 17 2009
a(n) ~ 2^(3*n-5/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2013
a(n) = 4^(n-2)*hypergeom([3/2, -n+2], [3], -1) for n>1. - Peter Luschny, Feb 03 2015
a(n+1) = GegenbauerC(n-1, -n, -3)/n for n>=1. - Peter Luschny, May 09 2016
From Peter Bala, Feb 03 2024: (Start)
G.f.: 3*x + x^2/(1 - 4*x) * c(x/(1 - 4*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+2) = Sum_{k = 0..n} 4^(n-k)*binomial(n, k)*Catalan(k+1).
G.f.: 3*x + x^2/(1 - 8*x) * c(-x/(1 - 8*x))^2.
a(n+2) = 8^n * Sum_{k = 0..n} (-8)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+2) = 8^n * hypergeom([-n, 3/2], [3], 1/2).
a(n) is odd iff n is a power of 2. (End)

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A349331 G.f. A(x) satisfies A(x) = 1 + x * A(x)^4 / (1 - x).

Original entry on oeis.org

1, 1, 5, 31, 219, 1678, 13570, 114014, 985542, 8708099, 78298727, 714105907, 6590200215, 61427125994, 577456943614, 5468604044500, 52122539760992, 499613409224137, 4813105582181533, 46576519080852235, 452545041339982871, 4413071971740021275, 43177663974461532959
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^4/(1-x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x A[x]^4/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 22}]
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^4, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(4*k,k) / (3*k+1).
a(n) ~ 283^(n + 1/2) / (2^(7/2) * sqrt(Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Nov 15 2021

A307678 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3/(1 - x).

Original entry on oeis.org

1, 1, 4, 19, 101, 578, 3479, 21714, 139269, 912354, 6078832, 41066002, 280636657, 1936569717, 13475408847, 94446518559, 666149216744, 4724705621702, 33676421377532, 241100485812034, 1732999323835918, 12501487280292424, 90478497094713958, 656788523782034248, 4780725762185300389
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2019

Keywords

Comments

Convolution square root of A270386.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 101*x^4 + 578*x^5 + 3479*x^6 + 21714*x^7 + 139269*x^8 + 912354*x^9 + 6078832*x^10 + ...
		

Crossrefs

Cf. A001764, A002212, A006013, A127897, A188687 (partial sums), A270386.

Programs

  • Mathematica
    terms = 24; A[] = 1; Do[A[x] = 1 + x A[x]^3/(1 - x) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[Sum[a[k] a[i - k] a[j - i], {k, 0, i}], {i, 0, j}], {j, 0, n - 1}]; Table[a[n], {n, 0, 24}]
    terms = 24; CoefficientList[Series[2 Sqrt[(1 - x) Sin[1/3 ArcSin[3/2 Sqrt[3] Sqrt[x/(1 - x)]]]^2/x]/Sqrt[3], {x, 0, terms}], x]
  • Maxima
    a(n):=sum(binomial(n-1,n-k)*(binomial(3*k,k))/(2*k+1),k,0,n); /* Vladimir Kruchinin, Feb 05 2022*/
    
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^3, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(0) = 1; a(n) = Sum_{j=0..n-1} Sum_{i=0..j} Sum_{k=0..i} a(k)*a(i-k)*a(j-i).
a(n) ~ 31^(n + 1/2) / (3*sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - Vaclav Kotesovec, May 06 2019
G.f.: (2/sqrt(3*x/(1-x)))*sin((1/3)*asin(sqrt((27*x/(1-x))/4))). - Vladimir Kruchinin, Feb 05 2022
a(n) = Sum_{k=0..n} C(n-1,n-k)*C(3*k,k)/(2*k+1). - Vladimir Kruchinin, Feb 05 2022

A349332 G.f. A(x) satisfies A(x) = 1 + x * A(x)^5 / (1 - x).

Original entry on oeis.org

1, 1, 6, 46, 406, 3901, 39627, 418592, 4551672, 50610692, 572807157, 6577068383, 76426719408, 897078662538, 10620634999318, 126676885170703, 1520759193166329, 18361269213121164, 222814883564042704, 2716125963857227904, 33244557641365865109
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^5/(1-x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^5/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^5, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(5*k,k) / (4*k+1).
a(n) ~ 3381^(n + 1/2) / (25 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Nov 15 2021
Recurrence: 8*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*a(n) = (4405*n^4 - 10346*n^3 + 9575*n^2 - 4354*n + 840)*a(n-1) - 12*(n-2)*(1255*n^3 - 3957*n^2 + 4492*n - 1820)*a(n-2) + 2*(n-3)*(n-2)*(10655*n^2 - 32733*n + 26908)*a(n-3) - 4*(n-4)*(n-3)*(n-2)*(3445*n - 6986)*a(n-4) + 3381*(n-5)*(n-4)*(n-3)*(n-2)*a(n-5). - Vaclav Kotesovec, Nov 17 2021

A039963 The period-doubling sequence A035263 repeated.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

An example of a d-perfect sequence.
Motzkin numbers mod 2. - Benoit Cloitre, Mar 23 2004
Let {a, b, c, c, a, b, a, b, a, b, c, c, a, b, ...} be the fixed point of the morphism: a -> ab, b -> cc, c -> ab, starting from a; then the sequence is obtained by taking a = 1, b = 1, c = 0. - Philippe Deléham, Mar 28 2004
The asymptotic mean of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
The Gilbreath transform of floor(log_2(n)) (A000523). - Thomas Scheuerle, Sep 02 2024

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

Programs

  • Mathematica
    Flatten[ Nest[ Function[l, {Flatten[(l /. {a -> {a, b}, b -> {c, c}, c -> {a, b}})]}], {a}, 7] /. {a -> {1}, b -> {1}, c -> {0}}] (* Robert G. Wilson v, Feb 26 2005 *)
  • PARI
    A039963(n) = 1 - valuation(n\2+1,2)%2; \\ Max Alekseyev, Oct 23 2021
    
  • Python
    def A039963(n): return ((m:=(n>>1)+1)&-m).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A035263(1+floor(n/2)). - Benoit Cloitre, Mar 23 2004
a(n) = A040039(n) mod 2 = A002212(n+1) mod 2. a(0) = a(1) = 1, for n>=2: a(n) = ( a(n) + Sum_{k=0..n-2} a(k)*a(n-2-k)) mod 2. - Philippe Deléham, Mar 26 2004
a(n) = (A(n+2) - A(n)) mod 2, for A = A019300, A001285, A010060, A010059, A000069, A001969. - Philippe Deléham, Mar 28 2004
a(n) = A001006(n) mod 2. - Christian G. Bower, Jun 12 2005
a(n) = (-1)^n*(A096268(n+1) - A096268(n)). - Johannes W. Meijer, Feb 02 2013
a(n) = 1 - A007814(floor(n/2)+1) mod 2 = A005802(n) mod 2. - Max Alekseyev, Oct 23 2021

Extensions

More terms from Christian G. Bower, Jun 12 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe and Ralf Stephan, Jul 13 2007

A026376 a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).

Original entry on oeis.org

1, 6, 30, 144, 685, 3258, 15533, 74280, 356283, 1713690, 8263596, 39938616, 193419915, 938430990, 4560542550, 22195961280, 108171753355, 527816696850, 2578310320610, 12607504827600, 61706212037295, 302275142049870, 1481908332595625, 7270432009471224
Offset: 1

Views

Author

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis) from (0,0) to (2n+2,0), with exactly one peak at an even level. E.g., a(2)=6 because we have UUDDH, HUUDD, UDUUDD, UUDDUD, UUDHD and UHUDD. - Emeric Deutsch, Dec 28 2003
Number of left steps in all skew Dyck paths of semilength n+1. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=6 because in the 10 (=A002212(3)) skew Dyck paths of semilength 3 ( namely UDUUDL, UUUDLD, UUDUDL, UUUDDL, UUUDLL and five Dyck paths that have no left steps) we have altogether 6 left steps. - Emeric Deutsch, Aug 05 2007
From Gary W. Adamson, May 17 2009: (Start)
Equals A026378 (1, 4, 17, 75, ...) convolved with A007317 (1, 2, 5, 15, 51, ...).
Equals A081671 (1, 3, 11, 45, ...) convolved with A002212 (1, 3, 10, 36, 137, ...).
(End)

Crossrefs

Programs

  • Maple
    a := n -> simplify(GegenbauerC(n-1, -n, -3/2)):
    seq(a(n), n=1..24); # Peter Luschny, May 09 2016
  • Mathematica
    Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
    
  • Sage
    A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4)
    [round(A026376(n).n(100)) for n in (1..24)] # Peter Luschny, Sep 16 2014
    
  • Sage
    # Recurrence:
    def A026376():
        x, y, n = 1, 1, 1
        while True:
            x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2)
            yield n*x
            n += 1
    a = A026376()
    [next(a) for i in (1..24)] # Peter Luschny, Sep 16 2014

Formula

E.g.f.: exp(3x)*I_1(2x), where I_1 is Bessel function. - Michael Somos, Sep 09 2002
G.f.: (1 - 3*z - t)/(2*z*t) where t = sqrt(1-6*z+5*z^2). - Emeric Deutsch, May 25 2003
a(n) = [t^(n+1)](1+3t+t^2)^n. a := n -> Sum_{j=ceiling((n+1)/2)..n} 3^(2j-n-1)*binomial(n, j)*binomial(j, n+1-j). - Emeric Deutsch, Jan 30 2004
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+1). - Paul Barry, Sep 20 2004
a(n) = n*A002212(n). - Emeric Deutsch, Aug 05 2007
D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (23*n-27)*a(n-2) + 15*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012
a(n) ~ 5^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = n*hypergeometric([1, 3/2, 1-n],[1, 3],-4). - Peter Luschny, Sep 16 2014
a(n) = GegenbauerC(n-1, -n, -3/2). - Peter Luschny, May 09 2016

A055879 Least nondecreasing sequence with a(1) = 1 and Hankel transform {1,1,1,1,...}.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 15, 15, 51, 51, 188, 188, 731, 731, 2950, 2950, 12235, 12235, 51822, 51822, 223191, 223191, 974427, 974427, 4302645, 4302645, 19181100, 19181100, 86211885, 86211885, 390248055, 390248055, 1777495635, 1777495635, 8140539950, 8140539950
Offset: 1

Views

Author

John W. Layman, Jul 15 2000

Keywords

Comments

Hankel transform {t(n)} of {a(n)} is given by t(n) = Det[{a(1), a(2), ..., a(n)}, {a(2), a(3), ..., a(n+1)}, ..., {a(n), a(n+1), ..., a(2n-1)}].
The bisections of this sequence appear to be the binomial transform of the Catalan numbers, A007317. If that is true then the g.f. for this sequence is (1/(2*x))*( 1 + x - (1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)), which occurs in the Cyvin et al. reference.
Self-convolution yields A039658 (shifted left), which is related to enumeration of edge-rooted catafusenes. - Paul D. Hanna, Aug 08 2008

Examples

			G.f.: x + x^2 + 2*x^3 + 2*x^4 + 5*x^5 + 5*x^6 + 15*x^7 + 15*x^8 + 51*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, With[ {m = n - 1}, SeriesCoefficient[ Nest[ 1 / (1 - x - x^2 / (1 + x - x^2 #)) &, 1, Quotient[ m + 1, 2]], {x, 0, m}]]]; (* Michael Somos, Jul 01 2011 *)
    CoefficientList[Series[Sqrt[(1 + x) (1 - 3 x^2 - Sqrt[1 - 6 x^2 + 5 x^4])/(2 (1 - x))]/x^2, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
  • PARI
    a(n)=n--; local(A=1+x+x*O(x^n));for(i=0,n,B=subst(A,x,-x);A=1+x*A+x^2*A*B);polcoeff(A,n)
    
  • PARI
    a(n)=n++; polcoeff(sqrt((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4 +x^4*O(x^n)))/(2*(1-x))),n) \\ Paul D. Hanna, Aug 08 2008
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n))}; /* Michael Somos, Jul 01 2011 */

Formula

G.f.: A(x) = sqrt( (1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*(1-x)) ). G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)*A(-x). - Paul D. Hanna, Aug 08 2008
G.f.: 1/(1-x-x^2/(1+x-x^2/(1-x-x^2/(1+x-x^2/(1-... (continued fraction). - Paul Barry, Feb 11 2009
D-finite with recurrence (n+1)*a(n) - a(n-1) + (-6*n+11)*a(n-2) + 5*a(n-3) + 5*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
G.f.: sqrt((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*(1-x)))/x. - Vaclav Kotesovec, Feb 13 2014
a(n) ~ (5+sqrt(5) - (-1)^n*(5-sqrt(5))) * sqrt(2) * 5^(n/2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
a(n) = a(n-1) if n is even. a(n) = a(n-1)+A002212((n-1)/2) if n is odd. [Cyvin (1992) eq (14)] - R. J. Mathar, Dec 15 2020

Extensions

More terms from Vincenzo Librandi, Feb 14 2014
Previous Showing 11-20 of 148 results. Next