A059722
a(n) = n*(2*n^2 - 2*n + 1).
Original entry on oeis.org
0, 1, 10, 39, 100, 205, 366, 595, 904, 1305, 1810, 2431, 3180, 4069, 5110, 6315, 7696, 9265, 11034, 13015, 15220, 17661, 20350, 23299, 26520, 30025, 33826, 37935, 42364, 47125, 52230, 57691, 63520, 69729, 76330, 83335, 90756, 98605, 106894, 115635, 124840
Offset: 0
A144823
Square array A(n,k), n>=1, k>=1, read by antidiagonals, with A(1,k)=1 and sequence a_k of column k shifts left when Dirichlet convolution with a_k (DC:(b,a_k)->a) applied k times.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 30, 18, 1, 1, 6, 25, 70, 90, 40, 1, 1, 7, 36, 135, 280, 288, 80, 1, 1, 8, 49, 231, 675, 1168, 864, 168, 1, 1, 9, 64, 364, 1386, 3475, 4672, 2647, 340, 1, 1, 10, 81, 540, 2548, 8496, 17375, 18884, 7968, 698, 1, 1, 11, 100
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, 9, ...
4, 9, 16, 25, 36, 49, 64, 81, ...
9, 30, 70, 135, 231, 364, 540, 765, ...
18, 90, 280, 675, 1386, 2548, 4320, 6885, ...
40, 288, 1168, 3475, 8496, 18130, 35008, 62613, ...
80, 864, 4672, 17375, 50976, 126910, 280064, 563517, ...
-
with(numtheory): dc:= proc(b,c) proc(n) option remember; add(b(d) *c(n/d), d=`if`(n<0,{},divisors(n))) end end: A:= proc(n, k) local a, b, t; b[1]:= dc(a,a); for t from 2 to k do b[t]:= dc(b[t-1],a) od: a:= n-> `if`(n=1, 1, b[k](n-1)); a(n) end: seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum [b[d] *c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc]; A [n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], a]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[Table [A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 20 2013, translated from Maple *)
A081422
Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
Offset: 0
The array starts
1 1 3 10 ...
1 2 6 16 ...
1 3 9 22 ...
1 4 12 28 ...
The triangle starts
1;
1, 1;
1, 2, 3;
1, 3, 6, 10;
1, 4, 9, 16, 25;
...
Diagonals include
A001093,
A053698,
A069778,
A000578,
A002414,
A081423,
A081435,
A081436,
A081437,
A081438,
A081441.
Antidiagonals are composed of n-gonal numbers.
-
Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
-
[[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
-
Table[PolygonalNumber[n,i],{n,0,10},{i,n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
-
tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
-
[[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
A152618
a(n) = (n-1)^2*(n+1).
Original entry on oeis.org
1, 0, 3, 16, 45, 96, 175, 288, 441, 640, 891, 1200, 1573, 2016, 2535, 3136, 3825, 4608, 5491, 6480, 7581, 8800, 10143, 11616, 13225, 14976, 16875, 18928, 21141, 23520, 26071, 28800, 31713, 34816, 38115, 41616, 45325, 49248, 53391, 57760, 62361
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Benoît Bertand and Erwan Brugallé, On the number of connected components of the parabolic curve, Comptes Rendus Mathématique, Vol. 348, No. 5-6 (2010), pp. 287-289; arXiv preprint, arXiv:0904.4652 [math.AG], Apr 29 2009. - _Jonathan Vos Post_, Apr 30 2009
- Jim Propp and Adam Propp-Gubin, Counting Triangles in Triangles, arXiv:2409.17117 [math.CO], 2024. See p. 9.
-
[(n-1)^2*(n+1): n in [0..50]]; // Vincenzo Librandi, Jun 25 2013
-
A152618:=n->(n-1)^2*(n+1); seq(A152618(k), k=0..100); # Wesley Ivan Hurt, Oct 06 2013
-
f[n_]:=(n-1)^2*(n+1);f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
CoefficientList[Series[(9 x^2 - 4 x + 1)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2013 *)
-
a(n)=(n+1)*(n-1)^2 \\ Charles R Greathouse IV, Mar 21 2014
A157704
G.f.s of the z^p coefficients of the polynomials in the GF3 denominators of A156927.
Original entry on oeis.org
1, 1, 5, 32, 186, 132, 10, 56, 2814, 17834, 27324, 11364, 1078, 10, 48, 17988, 494720, 3324209, 7526484, 6382271, 2004296, 203799, 4580, 5, 16, 72210, 7108338, 146595355, 1025458635, 2957655028, 3828236468
Offset: 0
Some PDGF3 (z;n) are:
PDGF3(z;n=3) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10
PDGF3(z;n=4) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10*(1-5*z)^13
The first few GFKT3's are:
GFKT3(z;p=0) = 1/(1-z)
GFKT3(z;p=1) = -(5*z+1)/(1-z)^4
GFKT3(z;p=2) = z*(32+186*z+132*z^2+10*z^3)/(1-z)^7
Some KT3(z,p) polynomials are:
KT3(z;p=2) = 32+186*z+132*z^2+10*z^3
KT3(z;p=3) = 56+2814*z+17834*z^2+27324*z^3+11364*z^4+1078*z^5+10*z^6
See
A002414 for the z^1 coefficients and
A157707 for the z^2 coefficients divided by 2.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(k+1)*z)^(1+3*k), k=0..n2): a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT3(p):=sum((fk)*z^k, k=0..infinity); q3:=ldegree((numer(GFKT3(p)))): KT3(p):=sort((-1)^(p)*simplify((GFKT3(p)*(1-z)^(3*p+1))/z^q3),z, ascending);
A213820
Principal diagonal of the convolution array A213819.
Original entry on oeis.org
2, 18, 60, 140, 270, 462, 728, 1080, 1530, 2090, 2772, 3588, 4550, 5670, 6960, 8432, 10098, 11970, 14060, 16380, 18942, 21758, 24840, 28200, 31850, 35802, 40068, 44660, 49590, 54870, 60512, 66528, 72930, 79730, 86940, 94572, 102638, 111150, 120120, 129560, 139482
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Ivan Gutman and Kinkar C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A220084
a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.
Original entry on oeis.org
1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
Offset: 0
Cf.
A000292,
A000330,
A000566,
A002411,
A002412,
A002413,
A002414,
A051662,
A130748,
A212983,
A213772,
A213837.
-
[(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
-
/* By first comment: */ A002413:=func; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
-
I:=[1,15,62,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{1,15,62,162},40] (* Harvey P. Dale, Dec 23 2012 *)
CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
-
a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015
A279219
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k-1)/2).
Original entry on oeis.org
1, 1, 10, 40, 155, 560, 2051, 7080, 24064, 79370, 257067, 815593, 2545201, 7812699, 23639459, 70551216, 207932549, 605611061, 1744513262, 4973116444, 14038641287, 39263308551, 108849552289, 299248060986, 816159923366, 2209102273109, 5936069692320, 15840122529455, 41987363787469, 110584436073149
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index to sequences related to pyramidal numbers
-
nmax=29; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
A322637
Numbers that are sums of consecutive octagonal numbers (A000567).
Original entry on oeis.org
0, 1, 8, 9, 21, 29, 30, 40, 61, 65, 69, 70, 96, 105, 126, 133, 134, 135, 161, 176, 201, 222, 225, 229, 230, 231, 280, 294, 309, 334, 341, 355, 363, 364, 401, 405, 408, 470, 481, 505, 510, 531, 534, 539, 540, 560, 621, 630, 645, 681, 695, 735, 736, 749, 756, 764, 765, 814, 833, 846
Offset: 1
-
N:= 1000: # for terms up to N
Octa:= [seq(n*(3*n-2),n=0..floor((1+sqrt(1+3*N))/3))]:
PS:= ListTools:-PartialSums(Octa):
S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N):
sort(convert(S,list)); # Robert Israel, May 22 2025
-
terms = 60;
nmax = 17; kmax = 9; (* empirical *)
T = Table[n(3n-2), {n, 0, nmax}];
Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)
A130748
Place n points on each of the three sides of a triangle, 3n points in all; a(n) = number of nondegenerate triangles that can be constructed using these points (plus the 3 original vertices) as vertices.
Original entry on oeis.org
17, 72, 190, 395, 711, 1162, 1772, 2565, 3565, 4796, 6282, 8047, 10115, 12510, 15256, 18377, 21897, 25840, 30230, 35091, 40447, 46322, 52740, 59725, 67301, 75492, 84322, 93815, 103995, 114886, 126512, 138897, 152065, 166040, 180846, 196507, 213047, 230490
Offset: 1
5 points are put on each side of a triangle (n = 5); we then have 18 vertices to construct with: 5 * 3 + 3 originals. The number of total arrangements = combi(18,3) : combi[3(n+1),3]. But these include degenerates along the 3 sides: 7 points on each side, so combi(7,3) on each side : 3 * combi[n+2, 3] combi[18,3] - 3 * combi[7,3] = 816 - 105 = 711.
Cf.
A002414,
A213833,
A220084 (for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
Comments