cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 115 results. Next

A212163 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212162 for example. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212195 first at (n,k) = (4,5): A(4,5) = 4034304, A212195(4,5) = 4038432.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4034304, ...
  5,  180,   32940,     30847500,      148039757460, ...
  6,  480,  393600,   3312560640,   286169360240640, ...
  7, 1050, 2735250, 123791435250, 97337270132408250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068246, 6*A068247.
Rows n=1-15 give: A000007, A000038, A040006, 4*A068271, 5*A068272, 6*A068273, 7*A068274, 8*A068275, 9*A068276, 10*A068277, 11*A068278, 12*A068279, 13*A068280, 14*A068281, 15*A068282.

A034263 a(n) = binomial(n+4,4)*(4*n+5)/5.

Original entry on oeis.org

1, 9, 39, 119, 294, 630, 1218, 2178, 3663, 5863, 9009, 13377, 19292, 27132, 37332, 50388, 66861, 87381, 112651, 143451, 180642, 225170, 278070, 340470, 413595, 498771, 597429, 711109, 841464, 990264, 1159400, 1350888, 1566873, 1809633, 2081583, 2385279
Offset: 0

Views

Author

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
5-dimensional form of hexagonal-based pyramid numbers. - Ben Creech (mathroxmysox(AT)yahoo.com), Nov 17 2005
Convolution of triangular numbers (A000217) and hexagonal numbers (A000384). - Bruno Berselli, Jun 27 2013

Examples

			By the third comment: A000217(1..6) and A000384(1..6) give the term a(5) = 1*21+5*15+12*10+22*6+35*3+51*1 = 630. - _Bruno Berselli_, Jun 27 2013
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/4).

Crossrefs

Partial sums of A002417.
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..35], n-> (4*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 28 2019
  • Magma
    [(4*n+5)*Binomial(n+4,4)/5: n in [0..35]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120: seq(a(n),n=0..35); # Emeric Deutsch, Nov 18 2005
  • Mathematica
    Table[Binomial[n+4, 4]*(4*n+5)/5, {n,0,35}] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *)
    a[n_] := (1+n)(2+n)(3+n)(4+n)(4n+5)/120; Array[a, 36, 0] (* or *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 39, 119, 294, 630}, 36] (* or *)
    CoefficientList[ Series[(1+3*x)/(1-x)^6, {x, 0, 35}], x] (* Robert G. Wilson v, Feb 26 2015 *)
    Table[Sum[-x^2 + y^2 + z^2, {x, 0, g}, {y, x, g}, {z, y, g}], {g, 1, 30}]/4 (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n)=(n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120 \\ Charles R Greathouse IV, Sep 24 2015, corrected by Altug Alkan, Aug 15 2017
    
  • Sage
    [(4*n+5)*binomial(n+4,4)/5 for n in (0..35)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = A093561(n+5, 5).
a(n) = A034261(n+1, 3).
G.f.: (1+3*x)/(1-x)^6.
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120. - Emeric Deutsch and Ben Creech (mathroxmysox(AT)yahoo.com), Nov 17 2005, corrected by Eric Rowland, Aug 15 2017
a(-n-4) = -A059599(n). - Bruno Berselli, Aug 23 2011
a(n) = Sum_{i=1..n+1} i*A000292(i). - Bruno Berselli, Jan 23 2015
Sum_{n>=0} 1/a(n) = 28300/231 - 1280*Pi/77 - 7680*log(2)/77. - Amiram Eldar, Feb 15 2022

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000

A068248 1/6 the number of colorings of a 5 X 5 staggered hexagonal array with n colors.

Original entry on oeis.org

1, 673072, 24674450670, 47695073906240, 16222886703881375, 1842996310592836896, 98798502888215704812, 3068393794369671728640, 62960689505171989129005, 933100312771109288146000, 10639781342848431789710266, 97779035987698387480546752, 750090455960001686602653035
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (3006792824+ (-26845691044+ (115537440058+ (-319333174471+ (636781496832+ (-975359012827+ (1192518013138+ (-1193724499144+ (995462037353+ (-699932345254+ (418375639535+ (-213720396671+ (93568819963+ (-35133625647+ (11298632584+
    (-3101089710+ (722137763+ (-141421592+ (23000726+ (-3051871+ (321994+ (-25992+ (1508+(-56+n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq (a(n), n=3..40);  # Alois P. Heinz, May 03 2012

Extensions

Extended beyond a(10) by Alois P. Heinz, May 03 2012

A093561 (4,1) Pascal triangle.

Original entry on oeis.org

1, 4, 1, 4, 5, 1, 4, 9, 6, 1, 4, 13, 15, 7, 1, 4, 17, 28, 22, 8, 1, 4, 21, 45, 50, 30, 9, 1, 4, 25, 66, 95, 80, 39, 10, 1, 4, 29, 91, 161, 175, 119, 49, 11, 1, 4, 33, 120, 252, 336, 294, 168, 60, 12, 1, 4, 37, 153, 372, 588, 630, 462, 228, 72, 13, 1, 4, 41, 190, 525, 960, 1218
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(4;n,m) gives in the columns m >= 1 the figurate numbers based on A016813, including the hexagonal numbers A000384 (see the W. Lang link).
This is the fourth member, d=4, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653 and A093560, for d=1..3.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+3*z)/(1-(1+x)*z).
The SW-NE diagonals give A000285(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018

Examples

			Triangle begins
  [1];
  [4, 1];
  [4, 5, 1];
  [4, 9, 6, 1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Row sums: A020714(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 3 for n=2 and 0 otherwise.
Columns m=1..9: A016813, A000384 (hexagonal), A002412, A002417, A034263, A051947, A050483, A052181, A055843.

Programs

  • Haskell
    a093561 n k = a093561_tabl !! n !! k
    a093561_row n = a093561_tabl !! n
    a093561_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [4, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093561(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+3*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m) = F(4;n-m, m) for 0<= m <= n, otherwise 0, with F(4;0, 0)=1, F(4;n, 0)=4 if n>=1 and F(4;n, m) = (4*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=4 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. row m (without leading zeros): (1+3*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 3*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 9*x + 6*x^2/2! + x^3/3!) = 4 + 13*x + 28*x^2/2! + 50*x^3/3! + 80*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A212195 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4038432, ...
  5,  180,   32940,     30847500,      148046704020, ...
  6,  480,  393600,   3312560640,   286170443437440, ...
  7, 1050, 2735250, 123791435250, 97337320223288250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

A220212 Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).

Original entry on oeis.org

0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0

Views

Author

Bruno Berselli, Dec 08 2012

Keywords

Comments

Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.

Crossrefs

Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.

Programs

  • Magma
    A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
    
  • Magma
    I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
    CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)

A068293 a(1) = 1; thereafter a(n) = 6*(2^(n-1) - 1).

Original entry on oeis.org

1, 6, 18, 42, 90, 186, 378, 762, 1530, 3066, 6138, 12282, 24570, 49146, 98298, 196602, 393210, 786426, 1572858, 3145722, 6291450, 12582906, 25165818, 50331642, 100663290, 201326586, 402653178, 805306362, 1610612730, 3221225466, 6442450938, 12884901882
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

1/4 the number of colorings of an n X n octagonal array with 4 colors.
Consider the planar net 3^6 (as in the top left figure in the uniform planar nets link). Then a(n) is the total number of ways that a spider starting at a point P can reach any point n steps away by using a path of length n. - N. J. A. Sloane, Feb 20 2016
From Gary W. Adamson, Jan 13 2009: (Start)
Equals inverse binomial transform of A091344: (1, 7, 31, 115, 391, ...).
Equals binomial transform of (1, 5, 7, 5, 7, 5, ...). (End)
For n > 1, number of ternary strings of length n with exactly 2 different digits. - Enrique Navarrete, Nov 20 2020

Crossrefs

Programs

  • Magma
    [1] cat [6*(2^(n-1)-1): n in [2..40]]; // Vincenzo Librandi, Feb 20 2016
  • Mathematica
    a=0; lst={1}; k=6; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
    Transpose[NestList[{First[#]+1,6(2^First[#]-1)}&,{1,1},30]][[2]] (* or *) Join[{1},LinearRecurrence[{3,-2},{6,18},30]] (* Harvey P. Dale, Nov 27 2011 *)
  • PARI
    a(n)=polcoeff(prod(i=1,2,(1+i*x))/(prod(i=1,2,(1-i*x))+x*O(x^n)),n)
    for(n=0,50,print1(a(n),","))
    

Formula

G.f.: (1+x)*(1+2*x)/((1-x)*(1-2*x)). - Benoit Cloitre, Apr 13 2002
a(n) = 3*a(n-1) - 2*a(n-2); a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Nov 27 2011
E.g.f.: 1 - 6*exp(x)*(exp(x) - 1). - Stefano Spezia, May 18 2024

Extensions

More terms from Benoit Cloitre, Apr 13 2002
Old definition (which is now a comment) replaced with explicit formula by N. J. A. Sloane, May 12 2010

A076454 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.

Original entry on oeis.org

1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

Comments

This sequence is related to A007585 by a(n) = n*A007585(n) - Sum_{i=0..n-1} A007585(i). - Vincenzo Librandi, Aug 08 2010
In fact, this is the case d=4 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6) - Sum_{k=0..n-1} k*(k+1)*(2*d*k-2*d+3)/6 = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Mar 01 2012
Bisection of A233329 (up to an offset). - L. Edson Jeffery, Jan 23 2014

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/2*n*(n+1)*(2*n^2-1),n=1..40);
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,21,102,310,735},40] (* Harvey P. Dale, Jun 30 2023 *)

Formula

a(n) = n*(n+1)*(2*n^2-1)/2.
G.f.: x*(1+16*x+7*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>=6, with a(1)=1, a(2)=21, a(3)=102, a(4)=310, a(5)=735. - L. Edson Jeffery, Dec 30 2013

Extensions

Comments rewritten from Bruno Berselli, Mar 01 2012
More terms from Vincenzo Librandi, Dec 30 2013

A047927 a(n) = n*(n-1)*(n-2)^2.

Original entry on oeis.org

0, 6, 48, 180, 480, 1050, 2016, 3528, 5760, 8910, 13200, 18876, 26208, 35490, 47040, 61200, 78336, 98838, 123120, 151620, 184800, 223146, 267168, 317400, 374400, 438750, 511056, 591948, 682080, 782130, 892800, 1014816, 1148928, 1295910, 1456560, 1631700, 1822176
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, May 01 2014: (Start)
G.f.: -6*x^3*(1+3*x) / (x-1)^5.
a(n) = 6*A002417(n-2). (End)
a(n) = A245334(n,3), n > 2. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/12 - 5/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 - 2*log(2) + 9/8. (End)

Extensions

Offset changed from 0 to 2 by Vincenzo Librandi, May 02 2011

A059300 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1;
1,  2;
1,  6,   3;
1, 12,  24,    4;
1, 20,  90,   80,    5;
1, 30, 240,  540,  240,   6;
1, 42, 525, 2240, 2835, 672, 7;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300. Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc. Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Mathematica
    t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017

Formula

T(n,k) = binomial(n+1,n-k+1)*(n-k+1)^k. - R. J. Mathar, Mar 14 2013
Previous Showing 11-20 of 115 results. Next