cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A057781 a(n) = n^4+4 = (n^2-2*n+2)*(n^2+2*n+2) = ((n-1)^2+1)*((n+1)^2+1).

Original entry on oeis.org

4, 5, 20, 85, 260, 629, 1300, 2405, 4100, 6565, 10004, 14645, 20740, 28565, 38420, 50629, 65540, 83525, 104980, 130325, 160004, 194485, 234260, 279845, 331780, 390629, 456980, 531445, 614660, 707285, 810004, 923525, 1048580, 1185925
Offset: 0

Views

Author

Henry Bottomley, Nov 04 2000

Keywords

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1, Nr. 11, p. 19. [From Reinhard Zumkeller, Apr 11 2010]

Crossrefs

Programs

Formula

G.f.: -(5*x^4-5*x^3+35*x^2-15*x+4) / (x-1)^5. - Colin Barker, Mar 29 2013
a(n) = A002523(n) + 3.
a(n) = A002522(n-1) * A002522(n+1).
Sum_{k=0..n} A033999(k)*A016755(k)/a(k) = A033999(n)*(n+1)/A053755(n+1), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = (n^2)^2 + 2^2 = (n^2-2)^2 + (2*n)^2. - Thomas Ordowski, Sep 15 2015
a(n) = A272298(3*n)/3^4. - Bruno Berselli, Apr 29 2016
Sum_{n>=0} 1/a(n) = (Pi*coth(Pi) + 1)/8. - Amiram Eldar, Oct 04 2021

A123659 a(n) = 1 + n^4 + n^6 + n^9 + n^10 + n^14.

Original entry on oeis.org

6, 18001, 4862512, 269750529, 6115250626, 78434755921, 678546021756, 4399254736897, 22880667197854, 100011001010001, 379778130741736, 1283985544700161, 3937524853545882, 11112316748827729, 29193541130581876
Offset: 1

Views

Author

Jonathan Vos Post, Oct 05 2006

Keywords

Crossrefs

Programs

  • Magma
    [1 + n^4 + n^6 + n^9 + n^10 + n^14: n in [1..25]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[1 + n^4 + n^6 + n^9 + n^10 + n^14, {n, 1, 50}] (* G. C. Greubel, Oct 17 2017 *)
  • PARI
    for(n=1,25, print1(1 + n^4 + n^6 + n^9 + n^10 + n^14, ", ")) \\ G. C. Greubel, Oct 17 2017
    

Formula

a(n) = 1 + n^4 + n^6 + n^9 + n^10 + n^14.

A113679 Expansion of (1-x-2x^2)/(1-x).

Original entry on oeis.org

1, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2
Offset: 0

Views

Author

Paul Barry, Nov 04 2005

Keywords

Comments

From Gary W. Adamson, Mar 06 2012: (Start)
Signed (1, 0, -2, 2, -2, 2, ...) and convolved with the Toothpick sequence A139250 = A151548: (1, 3, 5, 7, 5, 11, ...). The inverse of (1, 0, -2, 2, -2, ...) = A151575: (1, 0, 2, -2, 6, -10, 22, ...).
The unsigned sequence convolved with:
(1, 2, 3, ...) = A002523, (n^2 + 1). Convolved with:
(A001045) = .... A097064: (1, 1, 5, 9, 21, 41, ...).
(End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x-2x^2)/(1-x),{x,0,80}],x] (* or *) Join[{1,0}, PadRight[{},80,-2]] (* Harvey P. Dale, Mar 05 2012 *)

Formula

a(n) = C(0, n) + 2*C(1, n) - 2.

A193562 Number of divisors of n^4+1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 4, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 4, 4, 2, 8, 4, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 4, 4, 8, 4, 16, 8, 8, 2, 8, 2, 8, 4, 8, 4, 8, 2, 8, 2, 4, 4, 16, 8, 4, 4, 8, 8, 4, 8, 8, 4, 8, 8, 4, 4, 4, 2, 8, 8, 16, 4, 16, 2, 4, 2, 16, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to n^4+1 as A193432 is to n^2+1.
a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(3) = 4 because 3^4+1 = 82, whose 4 factors are {1, 2, 41, 82}.
		

Crossrefs

Cf. A000005, A002523, A037896, A193432 (number of divisors of n^2+1).

Programs

  • Magma
    [NumberOfDivisors(n^4+1):n in [0..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    DivisorSigma[0,Range[0,90]^4+1] (* Harvey P. Dale, May 05 2013 *)
  • PARI
    a(n) = numdiv(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A000005(A002523(n)) = d(n^4+1) (also called tau(n^4+1) or sigma_0(n^4+1)), the number of divisors of n^4+1.

A193929 Number of prime factors of n^4 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 3, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 2, 4, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 4, 2, 4, 1, 2, 1, 4, 2, 4, 2, 3, 1, 3, 1, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 3, 2, 3, 3, 4, 2, 2, 2, 2, 2, 3, 1
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1. a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(9) = 3 because 9^4+1 = 6562 = 2 * 17 * 193, which has 3 prime factors, counted with multiplicity
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^4+1)]:n in [1..120]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^4 + 1]][[2]]], {n, 100}]] (* T. D. Noe, Aug 10 2011 *)
    Join[{0},Table[PrimeOmega[n^4+1],{n,120}]] (* Harvey P. Dale, Sep 25 2012 *)
  • PARI
    a(n) = bigomega(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A002523(n)) = bigomega(n^4+1) or Omega(n^4+1).

A217795 Numbers n such that n^4+1 and (n+2)^4+1 are both prime.

Original entry on oeis.org

2, 4, 46, 54, 80, 88, 140, 276, 492, 554, 566, 582, 730, 758, 786, 798, 912, 928, 1142, 1150, 1200, 1236, 1404, 1540, 1552, 1610, 1644, 1650, 1932, 1942, 2044, 2102, 2204, 2222, 2224, 2238, 2254, 2374, 2436, 2486, 2510, 2640, 2674, 2698, 2732, 2734, 3244, 3286
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Examples

			4 is in the sequence because 4^4+1 = 257 and 6^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3300] | IsPrime(n^4 + 1) and IsPrime((n + 2)^4 + 1)]; // Vincenzo Librandi, Oct 13 2012
  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 3000}];lst
    Select[Range[3500],AllTrue[{#^4+1,(#+2)^4+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A258806 a(n) = n^7 + 1.

Original entry on oeis.org

1, 2, 129, 2188, 16385, 78126, 279937, 823544, 2097153, 4782970, 10000001, 19487172, 35831809, 62748518, 105413505, 170859376, 268435457, 410338674, 612220033, 893871740, 1280000001, 1801088542, 2494357889, 3404825448, 4586471425, 6103515626, 8031810177
Offset: 0

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A004864.
Sequences of the type n^k+1: A002522 (k=2), A001093 (k=3), A002523 (k=4), A002561 (k=5), A002604 (k=6), this sequence (k=7), A060890 (k=8).
Cf. A300785.

Programs

  • GAP
    List([0..30],n->n^7+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [n^7+1: n in [0..40]];
    
  • Magma
    I:=[1,2,129,2188, 16385,78126,279937,823544]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) -28*Self(n-6) + 8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Maple
    seq(n^7+1,n=0..30); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[n^7 + 1, {n, 0, 40}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 2, 129, 2188, 16385, 78126, 279937, 823544}, 40]
  • PARI
    a(n)=n^7+1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n^7+1 for n in (1..40)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: (1 - 6*x + 141*x^2 + 1156*x^3 + 2451*x^4 + 1170*x^5 + 127*x^6)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = (n + 1)*(n^6 - n^5 + n^4 - n^3 + n^2 - n + 1).
a(n) = Sum_{k=0..n} A300785(n,k). - Kolosov Petro, Oct 23 2018
E.g.f.: (1 +x +63*x^2 +301*x^3 +350*x^4 +140*x^5 +*21*x^6 +x^7)*exp(x). - G. C. Greubel, Oct 24 2018

A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

Original entry on oeis.org

1, 5, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022, following a suggestion from Bernard Schott

Keywords

Comments

Apart from leading digits the same as A256920. - R. J. Mathar, May 20 2022

Examples

			1.578477579667136838318022193245719235046672217327291327587486645793808...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^4 + 1))

Formula

Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).

A123657 a(n) = 1 + n^4 + n^6 + n^9.

Original entry on oeis.org

4, 593, 20494, 266497, 1969376, 10125649, 40473658, 134483969, 387958492, 1001010001, 2359733894, 5162787073, 10609354744, 20668614737, 38454800626, 68736319489, 118612097588, 198393407569, 322734873982, 512064160001
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Crossrefs

Programs

Formula

a(n) = 1 + n^4 + n^6 + n^9 = 1001010001 (base n).
G.f.: -x*(x^9 -8*x^8 -406*x^7 -14592*x^6 -88496*x^5 -156316*x^4 -87762*x^3 -14744*x^2 -553*x -4)/(x-1)^10. - Colin Barker, May 27 2012
Previous Showing 11-20 of 33 results. Next