A266428
T(n,k)=Number of nXk binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 5, 14, 13, 5, 6, 25, 39, 22, 6, 7, 41, 106, 96, 34, 7, 8, 63, 259, 404, 212, 50, 8, 9, 92, 574, 1556, 1391, 433, 70, 9, 10, 129, 1170, 5365, 8764, 4383, 826, 95, 10, 11, 175, 2223, 16585, 49894, 45907, 12758, 1493, 125, 11, 12, 231, 3982, 46463, 251381
Offset: 1
Some solutions for n=4 k=4
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..0..0..1....0..0..1..1....0..0..1..0....0..1..0..1....0..1..1..1
..0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1
..0..1..0..1....1..1..1..0....1..1..0..0....1..1..1..0....1..0..0..1
Column 1 and row 1 are
A000027(n+1).
A267245
T(n,k)=Number of nXk binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 5, 13, 15, 5, 6, 22, 42, 31, 6, 7, 34, 105, 141, 63, 7, 8, 50, 232, 567, 486, 127, 8, 9, 70, 475, 1986, 3351, 1685, 255, 9, 10, 95, 904, 6292, 20040, 20676, 5804, 511, 10, 11, 125, 1632, 18205, 107015, 220235, 129129, 19769, 1023, 11, 12, 161, 2806
Offset: 1
Some solutions for n=4 k=4
..0..0..1..1....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..1..1..1....0..1..1..0....0..1..0..1....1..1..0..0....1..1..0..0
..1..0..1..1....0..0..1..1....1..1..0..0....1..1..0..1....1..1..0..0
..1..1..0..1....1..0..1..0....1..1..0..0....1..1..1..0....1..1..0..0
Column 1 and row 1 are
A000027(n+1).
A274537
Number T(n,k) of set partitions of [n] into k blocks such that each element is contained in a block whose index parity coincides with the parity of the element; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 3, 7, 2, 1, 0, 0, 1, 7, 14, 13, 3, 1, 0, 0, 1, 7, 35, 26, 22, 3, 1, 0, 0, 1, 15, 70, 113, 66, 34, 4, 1, 0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1, 0, 0, 1, 31, 310, 833, 933, 719, 200, 70, 5, 1
Offset: 0
T(6,2) = 1: 135|246.
T(6,3) = 3: 13|246|5, 15|246|3, 1|246|35.
T(6,4) = 7: 13|24|5|6, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46.
T(6,5) = 2: 1|26|3|4|5, 1|2|3|46|5.
T(6,6) = 1: 1|2|3|4|5|6.
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 1, 1;
0, 0, 1, 3, 2, 1;
0, 0, 1, 3, 7, 2, 1;
0, 0, 1, 7, 14, 13, 3, 1;
0, 0, 1, 7, 35, 26, 22, 3, 1;
0, 0, 1, 15, 70, 113, 66, 34, 4, 1;
0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1;
...
Columns k=0-10 give:
A000007,
A000007(n-1),
A000012(n-2),
A052551(n-3),
A274868,
A274869,
A274870,
A274871,
A274872,
A274873,
A274874.
-
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
`if`(irem(j, 2)=t, b(n-1, max(m, j), 1-t), 0), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0, 1)):
seq(T(n), n=0..12);
-
b[n_, m_, t_] := b[n, m, t] = If[n==0, x^m, Sum[If[Mod[j, 2]==t, b[n-1, Max[m, j], 1-t], 0], {j, 1, m+1}]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A122432
Riordan array (1/(1+x)^3,x).
Original entry on oeis.org
1, -3, 1, 6, -3, 1, -10, 6, -3, 1, 15, -10, 6, -3, 1, -21, 15, -10, 6, -3, 1, 28, -21, 15, -10, 6, -3, 1, -36, 28, -21, 15, -10, 6, -3, 1, 45, -36, 28, -21, 15, -10, 6, -3, 1, -55, 45, -36, 28, -21, 15, -10
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------
0: 1
1 :-3 1
2: 6 -3 1
3: -10 6 -3 1
4: 15 -10 6 -3 1
5; -21 15 -10 6 -3 1
6: 28 -21 15 -10 6 -3 1
7: -36 28 -21 15 -10 6 -3 1
8: 45 -36 28 -21 15 -10 6 -3 1
9: -55 45 -36 28 -21 15 -10 6 -3 1
... reformattet by - _Wolfdieter Lang_, Apr 05 2020
-
/* As triangle */ [[(-1)^(n-k)*Binomial(n-k+2, 2): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Oct 29 2017
-
Table[(-1)^(n - k)*Binomial[n - k + 2, 2], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 29 2017 *)
-
for(n=0,10, for(k=0,n, print1((-1)^(n-k)*binomial(n-k+2,2), ", "))) \\ G. C. Greubel, Oct 29 2017
A233301
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..k+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..n+1} nondecreasing.
Original entry on oeis.org
7, 13, 15, 22, 42, 31, 34, 105, 141, 64, 50, 232, 567, 502, 129, 70, 475, 1986, 3556, 1739, 258, 95, 904, 6292, 21957, 21856, 5964, 515, 125, 1632, 18205, 122022, 239330, 135636, 20185, 1029, 161, 2806, 48913, 616439, 2353493, 2694620, 836259, 67609
Offset: 1
Some solutions for n=4 k=4
..0..1..0..0..1....0..1..1..0..0....0..0..0..0..0....1..0..0..0..1
..0..0..1..1..1....0..0..1..0..1....1..0..0..0..1....0..1..0..1..0
..1..0..0..1..1....1..1..0..0..0....0..0..0..1..1....0..0..1..1..0
..0..1..1..1..1....0..0..0..1..1....0..1..1..0..0....0..0..1..0..1
..0..1..1..1..1....0..0..1..1..1....0..0..0..1..1....0..0..0..1..1
A055609
Number of 3 X n binary matrices with no zero rows or columns, up to row and column permutation.
Original entry on oeis.org
1, 5, 17, 42, 91, 180, 328, 565, 930, 1470, 2248, 3344, 4849, 6881, 9579, 13104, 17649, 23442, 30736, 39833, 51074, 64842, 81574, 101766, 125959, 154771, 188883, 229044, 276085, 330926, 394558, 468083, 552696, 649692, 760482, 886602, 1029691, 1191539, 1374065, 1579326
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -1, -3, -1, 3, 6, -6, -3, 1, 3, 1, -3, 1).
A122046
Partial sums of floor(n^2/8).
Original entry on oeis.org
0, 0, 0, 1, 3, 6, 10, 16, 24, 34, 46, 61, 79, 100, 124, 152, 184, 220, 260, 305, 355, 410, 470, 536, 608, 686, 770, 861, 959, 1064, 1176, 1296, 1424, 1560, 1704, 1857, 2019, 2190, 2370, 2560, 2760, 2970, 3190, 3421, 3663, 3916, 4180, 4456, 4744, 5044, 5356, 5681, 6019, 6370
Offset: 0
a(6) = 10 = 0 + 0 + 0 + 1 + 2 + 3 + 4.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- A. N. W. Hone, Comments on A122046
- A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, Proceedings of SIDE 6, Helsinki, Finland, 2004; arXiv:0807.2538 [nlin.SI], 2008. [Set a(n)=d(n+3) on p. 8]
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10a, lambda=4]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
-
[Round((2*n^3+3*n^2-8*n)/48): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
-
A122046 := proc(n) round((2*n^3+3*n^2-8*n)/48) ; end proc: # Mircea Merca
-
p[n_] := p[n] = Cancel[Simplify[ (x^(n - 1)p[n - 1]p[n - 4] + p[n - 2]*p[n - 3])/p[n - 5]]]; p[ -5] = 1;p[ -4] = 1;p[ -3] = 1;p[ -2] = 1;p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]
Accumulate[Floor[Range[0,60]^2/8]] (* or *) LinearRecurrence[{3,-3,1,1,-3,3,-1},{0,0,0,1,3,6,10},60] (* Harvey P. Dale, Dec 23 2019 *)
-
a(n)=(2*n^3+3*n^2-8*n+3)\48 \\ Charles R Greathouse IV, Oct 07 2015
More formulas and better name from
Mircea Merca, Nov 19 2010
A122047
Degree of the polynomial P(n,x), defined by a Somos-6 type sequence: P(n,x)=(x^(n-1)*P(n-1,x)*P(n-5,x) + P(n-2,x)*P(n-4,x))/P(n-6,x), initialized with P(n,x)=1 at n<0.
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 15, 22, 31, 42, 55, 70, 88, 109, 133, 160, 190, 224, 262, 304, 350, 400, 455, 515, 580, 650, 725, 806, 893, 986, 1085, 1190, 1302, 1421, 1547, 1680, 1820, 1968, 2124, 2288, 2460, 2640, 2829, 3027
Offset: 0
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, Proceedings of SIDE 6, Helsinki, Finland, 2004; arXiv:0807.2538 [nlin.SI], 2008. [Set a(n)=d(n+3) on p. 8]
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231 [quant-ph], 2008. [Eq 10a, lambda=5]
-
p[n_] := p[n] = Cancel[Simplify[(x^(n - 1)p[n - 1]p[n - 5] + p[n - 2]*p[n - 4])/p[n - 6]]];p[ -6] = 1; p[ -5] = 1; p[ -4] = 1; p[ -3] = 1; p[ -2] = 1; p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]
A233062
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..k+1} nondecreasing, and column sums sum{i*x(i,j), i=1..n+1} nondecreasing.
Original entry on oeis.org
7, 13, 16, 22, 47, 33, 34, 130, 161, 66, 50, 319, 723, 564, 132, 70, 755, 2875, 4393, 1933, 265, 95, 1680, 10650, 30692, 26819, 6529, 530, 125, 3673, 36674, 197625, 334580, 162916, 21904, 1052, 161, 7751, 119979, 1180594, 3849923, 3654675, 986252, 72710
Offset: 1
Some solutions for n=4 k=4
..0..0..1..0..1....0..0..1..1..1....0..1..0..0..1....0..0..1..1..0
..0..0..0..1..1....1..1..1..0..0....1..0..1..0..0....0..0..0..1..1
..0..0..0..1..1....0..1..1..0..1....0..0..0..1..1....1..0..0..1..1
..1..0..0..0..1....0..0..1..1..1....0..0..1..1..0....0..1..1..0..1
..0..1..1..1..1....0..1..0..1..1....0..1..0..0..1....0..1..1..1..1
A236560
Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3)^2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 3, 6, 2, 1, 1, 6, 21, 29, 14, 1, 6, 53, 161, 174, 1, 10, 111, 665, 1713, 1549, 608, 107, 11, 1, 1, 10, 201, 1961, 9973, 24267, 29437, 17438, 4756, 459
Offset: 3
T(6,2) = 6 because the number of equivalence classes of ways of placing 2 3 X 3 square tiles in a 6 X 6 square under all symmetry operations of the square is 6. The portrayal of an example from each equivalence class is:
.___________ ___________ ___________
| | | | |_____| | | |
| . | . | | . | | | . |_____|
|_____|_____| |_____| . | |_____| |
| | | |_____| | | . |
| | | | | |_____|
|___________| |___________| |_____|_____|
.
.___________ ___________ ___________
| | | |_____ _____| |_____ |
| . | | | | | | |_____|
|_____|_____| | . | . | | . | |
| | | |_____|_____| |_____| . |
| | . | | | | |_____|
|_____|_____| |___________| |_____|_____|
Comments