cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 92 results. Next

A266428 T(n,k)=Number of nXk binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 14, 13, 5, 6, 25, 39, 22, 6, 7, 41, 106, 96, 34, 7, 8, 63, 259, 404, 212, 50, 8, 9, 92, 574, 1556, 1391, 433, 70, 9, 10, 129, 1170, 5365, 8764, 4383, 826, 95, 10, 11, 175, 2223, 16585, 49894, 45907, 12758, 1493, 125, 11, 12, 231, 3982, 46463, 251381
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Comments

Table starts
..2...3....4......5........6..........7............8............9
..3...7...14.....25.......41.........63...........92..........129
..4..13...39....106......259........574.........1170.........2223
..5..22...96....404.....1556.......5365........16585........46463
..6..34..212...1391.....8764......49894.......251381......1122721
..7..50..433...4383....45907.....448649......3889553.....29520031
..8..70..826..12758...223075....3825307.....59155748....798834778
..9..95.1493..34611..1005991...30555624....861030491..21325003746
.10.125.2575..88206..4224203..227542455..11809616668.546283341439
.11.161.4270.212609.16588684.1579153474.151566391972

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..0..0..1....0..0..1..1....0..0..1..0....0..1..0..1....0..1..1..1
..0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1
..0..1..0..1....1..1..1..0....1..1..0..0....1..1..1..0....1..0..0..1
		

Crossrefs

Column 1 and row 1 are A000027(n+1).
Column 2 is A002623.
Row 2 is A004006(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12] Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^3 + (1/2)*n^2 + (4/3)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 11]
n=5: [polynomial of degree 19]
n=6: [polynomial of degree 33]
n=7: [polynomial of degree 57]

A267245 T(n,k)=Number of nXk binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 15, 5, 6, 22, 42, 31, 6, 7, 34, 105, 141, 63, 7, 8, 50, 232, 567, 486, 127, 8, 9, 70, 475, 1986, 3351, 1685, 255, 9, 10, 95, 904, 6292, 20040, 20676, 5804, 511, 10, 11, 125, 1632, 18205, 107015, 220235, 129129, 19769, 1023, 11, 12, 161, 2806
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2016

Keywords

Comments

Table starts
..2....3......4........5..........6............7..............8
..3....7.....13.......22.........34...........50.............70
..4...15.....42......105........232..........475............904
..5...31....141......567.......1986.........6292..........18205
..6...63....486.....3351......20040.......107015.........516084
..7..127...1685....20676.....220235......2093467.......17892539
..8..255...5804...129129....2499080.....43555569......683027146
..9..511..19769...804817...28501471....924051709....27044976947
.10.1023..66544..4982759..323067002..19614050515..1079112886476
.11.2047.221581.30629206.3626695952.413556580944.42860145907558

Examples

			Some solutions for n=4 k=4
..0..0..1..1....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..1..1..1....0..1..1..0....0..1..0..1....1..1..0..0....1..1..0..0
..1..0..1..1....0..0..1..1....1..1..0..0....1..1..0..1....1..1..0..0
..1..1..0..1....1..0..1..0....1..1..0..0....1..1..1..0....1..1..0..0
		

Crossrefs

Column 1 and row 1 are A000027(n+1).
Column 2 is A000225(n+1).
Row 2 is A002623.
Row 3 is A233302(n-1).
Row 4 is A233303(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2)
k=3: a(n) = 10*a(n-1) -39*a(n-2) +76*a(n-3) -79*a(n-4) +42*a(n-5) -9*a(n-6)
k=4: [order 10]
k=5: [order 14]
k=6: [order 22]
k=7: [order 32]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2)
n=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=3: [order 13]

A274537 Number T(n,k) of set partitions of [n] into k blocks such that each element is contained in a block whose index parity coincides with the parity of the element; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 3, 7, 2, 1, 0, 0, 1, 7, 14, 13, 3, 1, 0, 0, 1, 7, 35, 26, 22, 3, 1, 0, 0, 1, 15, 70, 113, 66, 34, 4, 1, 0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1, 0, 0, 1, 31, 310, 833, 933, 719, 200, 70, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 27 2016

Keywords

Comments

All odd elements are in blocks with an odd index and all even elements are in blocks with an even index.

Examples

			T(6,2) = 1: 135|246.
T(6,3) = 3: 13|246|5, 15|246|3, 1|246|35.
T(6,4) = 7: 13|24|5|6, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46.
T(6,5) = 2: 1|26|3|4|5, 1|2|3|46|5.
T(6,6) = 1: 1|2|3|4|5|6.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1,  1;
  0, 0, 1,  1,   1;
  0, 0, 1,  3,   2,   1;
  0, 0, 1,  3,   7,   2,   1;
  0, 0, 1,  7,  14,  13,   3,   1;
  0, 0, 1,  7,  35,  26,  22,   3,  1;
  0, 0, 1, 15,  70, 113,  66,  34,  4, 1;
  0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1;
  ...
		

Crossrefs

Row sums give A274538.
Columns k=0-10 give: A000007, A000007(n-1), A000012(n-2), A052551(n-3), A274868, A274869, A274870, A274871, A274872, A274873, A274874.
T(2n,n) gives A274875.
Main diagonal and lower diagonals give: A000012, A004526, A002623(n-2) or A173196.
Cf. A364267.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
         `if`(irem(j, 2)=t, b(n-1, max(m, j), 1-t), 0), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0, 1)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n==0, x^m, Sum[If[Mod[j, 2]==t, b[n-1, Max[m, j], 1-t], 0], {j, 1, m+1}]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A364267(n). - Alois P. Heinz, Jul 16 2023

A122432 Riordan array (1/(1+x)^3,x).

Original entry on oeis.org

1, -3, 1, 6, -3, 1, -10, 6, -3, 1, 15, -10, 6, -3, 1, -21, 15, -10, 6, -3, 1, 28, -21, 15, -10, 6, -3, 1, -36, 28, -21, 15, -10, 6, -3, 1, 45, -36, 28, -21, 15, -10, 6, -3, 1, -55, 45, -36, 28, -21, 15, -10
Offset: 0

Views

Author

Paul Barry, Sep 04 2006

Keywords

Comments

Sequence array for (-1)^n*C(n+2,2). Inverse of A122431. Row sums are -A083392(n+1). Antidiagonal sums are (-1)^n*A002623(n).
Call the unsigned version of this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A127893. - Peter Bala, Jul 22 2014
From Wolfdieter Lang, Apr 05 2020: (Start)
Triangle T(n, k) has the k=0 column (-1)^n*A000217(n+1) = (-1)^n*binomial(n+2, 2), then repeated and down-shifted.
The unsigned triangle, i.e., Tup(n, k) := (-1)^(n-k)*T(n-1,k-1) = binomial(n-k+2, 2) with n >= 1, k = 1..n, gives the number of triangles of length k (in some units), for k = 1..n, in the matchstick arrangement (or tower of cards, with n cards as basis) with an enclosing triangle of length n, but only triangles with orientation (up) like the enclosing triangle are counted. The total number of matchsticks (cards) is 3*A000217(n). (See the comment by Andrew Howroyd in A085691). Recurrence: Tup(n, k) = 0 for n < k, Tup(1, 1) = 1, and Tup(n, k) = Tup(n-1, k) + n - k + 1, for n >= 2, k = 1..n. Row sums give A000292(n). (End)

Examples

			The triangle T(n, k) begins:
n\k  0   1   2   3   4   5   6  7  8  9 ...
-------------------------------------------
0:   1
1  :-3   1
2:   6  -3   1
3: -10   6  -3   1
4:  15 -10   6  -3   1
5; -21  15 -10   6  -3   1
6:  28 -21  15 -10   6  -3   1
7: -36  28 -21  15 -10   6  -3  1
8:  45 -36  28 -21  15 -10   6 -3  1
9: -55  45 -36  28 -21  15 -10  6 -3  1
... reformattet by - _Wolfdieter Lang_, Apr 05 2020
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*Binomial(n-k+2, 2): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Oct 29 2017
  • Mathematica
    Table[(-1)^(n - k)*Binomial[n - k + 2, 2], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 29 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^(n-k)*binomial(n-k+2,2), ", "))) \\ G. C. Greubel, Oct 29 2017
    

Formula

Number triangle T(n, k) = [k<=n]*(-1)^(n-k)*binomial(n-k+2, 2).
Recurrence: T(n, k) = - T(n-1, k) + (-1)^(n-k)*(n-k+1), for n >= 0, and k = 0..n. - Wolfdieter Lang, Apr 06 2020

A233301 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..k+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..n+1} nondecreasing.

Original entry on oeis.org

7, 13, 15, 22, 42, 31, 34, 105, 141, 64, 50, 232, 567, 502, 129, 70, 475, 1986, 3556, 1739, 258, 95, 904, 6292, 21957, 21856, 5964, 515, 125, 1632, 18205, 122022, 239330, 135636, 20185, 1029, 161, 2806, 48913, 616439, 2353493, 2694620, 836259, 67609
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Table starts
....7.....13........22.........34..........50..........70..........95
...15.....42.......105........232.........475.........904........1632
...31....141.......567.......1986........6292.......18205.......48913
...64....502......3556......21957......122022......616439.....2871477
..129...1739.....21856.....239330.....2353493....20916337...170084407
..258...5964....135636....2694620....48504411...789640245.11764401320
..515..20185....836259...30257296..1007309118.30406745215
.1029..67609...5134856..338790472.21022231309
.2055.224165..31326263.3761876941
.4107.737347.190404404

Examples

			Some solutions for n=4 k=4
..0..1..0..0..1....0..1..1..0..0....0..0..0..0..0....1..0..0..0..1
..0..0..1..1..1....0..0..1..0..1....1..0..0..0..1....0..1..0..1..0
..1..0..0..1..1....1..1..0..0..0....0..0..0..1..1....0..0..1..1..0
..0..1..1..1..1....0..0..0..1..1....0..1..1..0..0....0..0..1..0..1
..0..1..1..1..1....0..0..1..1..1....0..0..0..1..1....0..0..0..1..1
		

Crossrefs

Row 1 is A002623(n+1)

A055609 Number of 3 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 5, 17, 42, 91, 180, 328, 565, 930, 1470, 2248, 3344, 4849, 6881, 9579, 13104, 17649, 23442, 30736, 39833, 51074, 64842, 81574, 101766, 125959, 154771, 188883, 229044, 276085, 330926, 394558, 468083, 552696, 649692, 760482, 886602, 1029691, 1191539, 1374065, 1579326
Offset: 1

Views

Author

Vladeta Jovovic, Jun 03 2000

Keywords

Crossrefs

Column k=3 of A056152.

Programs

Formula

G.f.: x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^3).

Extensions

Terms a(37) and beyond from Andrew Howroyd, Mar 25 2020

A122046 Partial sums of floor(n^2/8).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 16, 24, 34, 46, 61, 79, 100, 124, 152, 184, 220, 260, 305, 355, 410, 470, 536, 608, 686, 770, 861, 959, 1064, 1176, 1296, 1424, 1560, 1704, 1857, 2019, 2190, 2370, 2560, 2760, 2970, 3190, 3421, 3663, 3916, 4180, 4456, 4744, 5044, 5356, 5681, 6019, 6370
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Degree of the polynomial P(n+1,x), defined by P(n,x) = [x^(n-1)*P(n-1,x)*P(n-4,x)+P(n-2,x)*P(n-3,x)]/P(n-5,x) with P(1,x)=P(0,x)=P(-1,x)=P(-2,x)=P(-3,x)=1.
Define the sequence b(n) = 1, 4, 10, 20, 36, 60,... for n>=0 with g.f. 1/((1+x)*(1+x^2)*(1-x)^5). Then a(n+3) = b(n)-b(n-1) and b(n)+b(n+1)+b(n+2)+b(n+3) = A052762(n+7)/24. - J. M. Bergot, Aug 21 2013
Maximum Wiener index of all maximal 4-degenerate graphs with n-1 vertices. (A maximal 4-degenerate graph can be constructed from a 4-clique by iteratively adding a new 4-leaf (vertex of degree 4) adjacent to four existing vertices.) The extremal graphs are 4th powers of paths, so the bound also applies to 4-trees. - Allan Bickle, Sep 15 2022

Examples

			a(6) = 10 = 0 + 0 + 0 + 1 + 2 + 3 + 4.
		

Crossrefs

Partial sums of A001972.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046 (this sequence), A122047, A175724.

Programs

  • Magma
    [Round((2*n^3+3*n^2-8*n)/48): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A122046 := proc(n) round((2*n^3+3*n^2-8*n)/48) ; end proc: # Mircea Merca
  • Mathematica
    p[n_] := p[n] = Cancel[Simplify[ (x^(n - 1)p[n - 1]p[n - 4] + p[n - 2]*p[n - 3])/p[n - 5]]]; p[ -5] = 1;p[ -4] = 1;p[ -3] = 1;p[ -2] = 1;p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]
    Accumulate[Floor[Range[0,60]^2/8]] (* or *) LinearRecurrence[{3,-3,1,1,-3,3,-1},{0,0,0,1,3,6,10},60] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    a(n)=(2*n^3+3*n^2-8*n+3)\48 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = Sum_{k=0..n} floor(k^2/8).
a(n) = round((2*n^3 + 3*n^2 - 8*n)/48) = round((4*n^3 + 6*n^2 - 16*n - 9)/96) = floor((2*n^3 + 3*n^2 - 8*n + 3)/48) = ceiling((2*n^3 + 3*n^2 - 8*n - 12)/48). - Mircea Merca
a(n) = a(n-8) + (n-4)^2 + n, n > 8. - Mircea Merca
From Andrew Hone, Jul 15 2008: (Start)
a(n+1) = cos((2*n+1)*Pi/4)/(4*sqrt(2)) + (2*n+3)*(2*n^2 + 6*n - 5)/96 + (-1)^n/32.
a(n+1) = A057077(n+1)/8 + A090294(n-1)/32 + (-1)^n/32.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). (End)
O.g.f.: x^3 / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Jul 15 2008
From Johannes W. Meijer, May 20 2011: (Start)
a(n+3) = A144678(n) + A144678(n-1) + A144678(n-2) + A144678(n-3);
a(n+3) = Sum_{k=0..6} min(6-k+1,k+1)* A190718(n+k-6). (End)
a(n) = (4*n^3 + 6*n^2 - 16*n - 9 - 3*(-1)^n + 12*(-1)^((2*n - 1 + (-1)^n)/4))/96. - Luce ETIENNE, Mar 21 2014
E.g.f.: ((2*x^3 + 9*x^2 - 3*x - 6)*cosh(x) + 6*(cos(x) + sin(x)) + (2*x^3 + 9*x^2 - 3*x - 3)*sinh(x))/48. - Stefano Spezia, Apr 05 2023

Extensions

Edited by N. J. A. Sloane, Sep 17 2006, Jul 11 2008, Jul 12 2008
More formulas and better name from Mircea Merca, Nov 19 2010

A122047 Degree of the polynomial P(n,x), defined by a Somos-6 type sequence: P(n,x)=(x^(n-1)*P(n-1,x)*P(n-5,x) + P(n-2,x)*P(n-4,x))/P(n-6,x), initialized with P(n,x)=1 at n<0.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 22, 31, 42, 55, 70, 88, 109, 133, 160, 190, 224, 262, 304, 350, 400, 455, 515, 580, 650, 725, 806, 893, 986, 1085, 1190, 1302, 1421, 1547, 1680, 1820, 1968, 2124, 2288, 2460, 2640, 2829, 3027
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Maximum Wiener index of all maximal 5-degenerate graphs with n vertices. (A maximal 5-degenerate graph can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to 5 existing vertices.) The extremal graphs are 5th powers of paths, so the bound also applies to 5-trees. - Allan Bickle, Sep 15 2022

Crossrefs

The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623, A014125, A122046, A122047 (this sequence), A175724, respectively.

Programs

  • Mathematica
    p[n_] := p[n] = Cancel[Simplify[(x^(n - 1)p[n - 1]p[n - 5] + p[n - 2]*p[n - 4])/p[n - 6]]];p[ -6] = 1; p[ -5] = 1; p[ -4] = 1; p[ -3] = 1; p[ -2] = 1; p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]

Formula

Conjectures from R. J. Mathar, Jul 15 2008: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8);
o.g.f.: x^2/((x^4+x^3+x^2+x+1)(x-1)^4). (End)
Conjecture: a(n) = (A000292(n+1) - n - 2 - (-1)^floor((n-1)/5)*A099443(n+1))/5. - R. J. Mathar, Jul 15 2008
a(n+2) = A144679(n) + A144679(n-1) + A144679(n-2) + A144679(n-3) + A144679(n-4). - Johannes W. Meijer, May 20 2011
a(n) = floor((n^3 + 6*n^2 + 5*n)/30). - Allan Bickle, Sep 15 2022

Extensions

Edited by N. J. A. Sloane, Jul 15 2008
a(22)-a(43) from R. J. Mathar, Jul 15 2008

A233062 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..k+1} nondecreasing, and column sums sum{i*x(i,j), i=1..n+1} nondecreasing.

Original entry on oeis.org

7, 13, 16, 22, 47, 33, 34, 130, 161, 66, 50, 319, 723, 564, 132, 70, 755, 2875, 4393, 1933, 265, 95, 1680, 10650, 30692, 26819, 6529, 530, 125, 3673, 36674, 197625, 334580, 162916, 21904, 1052, 161, 7751, 119979, 1180594, 3849923, 3654675, 986252, 72710
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Comments

Table starts
....7.....13........22.........34..........50..........70..........95
...16.....47.......130........319.........755........1680........3673
...33....161.......723.......2875.......10650.......36674......119979
...66....564......4393......30692......197625.....1180594.....6637131
..132...1933.....26819.....334580.....3849923....41069900...410815334
..265...6529....162916....3654675....76267521..1476777204.26815913185
..530..21904....986252...39886178..1522090763.53995730752
.1052..72710...5942365..433495407.30425555678
.2092.238992..35694392.4690717033
.4183.781279.213988742

Examples

			Some solutions for n=4 k=4
..0..0..1..0..1....0..0..1..1..1....0..1..0..0..1....0..0..1..1..0
..0..0..0..1..1....1..1..1..0..0....1..0..1..0..0....0..0..0..1..1
..0..0..0..1..1....0..1..1..0..1....0..0..0..1..1....1..0..0..1..1
..1..0..0..0..1....0..0..1..1..1....0..0..1..1..0....0..1..1..0..1
..0..1..1..1..1....0..1..0..1..1....0..1..0..0..1....0..1..1..1..1
		

Crossrefs

Row 1 is A002623(n+1)

A236560 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 6, 2, 1, 1, 6, 21, 29, 14, 1, 6, 53, 161, 174, 1, 10, 111, 665, 1713, 1549, 608, 107, 11, 1, 1, 10, 201, 1961, 9973, 24267, 29437, 17438, 4756, 459
Offset: 3

Views

Author

Keywords

Comments

The first 8 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
3 1 1
4 1 1
5 1 3
6 1 3 6 2 1
7 1 6 21 29 14
8 1 6 53 161 174
9 1 10 111 665 1713 1549 608 107 11 1
10 1 10 201 1961 9973 24267 29437 17438 4756 459

Examples

			T(6,2) = 6 because the number of equivalence classes of ways of placing 2 3 X 3 square tiles in a 6 X 6 square under all symmetry operations of the square is 6. The portrayal of an example from each equivalence class is:
.___________      ___________      ___________
|     |     |    |     |_____|    |     |     |
|  .  |  .  |    |  .  |     |    |  .  |_____|
|_____|_____|    |_____|  .  |    |_____|     |
|           |    |     |_____|    |     |  .  |
|           |    |           |    |     |_____|
|___________|    |___________|    |_____|_____|
.
.___________      ___________      ___________
|     |     |    |_____ _____|    |_____      |
|  .  |     |    |     |     |    |     |_____|
|_____|_____|    |  .  |  .  |    |  .  |     |
|     |     |    |_____|_____|    |_____|  .  |
|     |  .  |    |           |    |     |_____|
|_____|_____|    |___________|    |_____|_____|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 3
T(n,1) = (floor((n-3)/2)+1)*(floor((n-3)/2+2))/2, n >= 3
T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor(3^2/4) + A014409(c+2), 0 <= c < 3, c even
T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor((3-1)(3-3)/4) + A014409(c+2), 0 <= c < 3, c odd
T(c+2*3,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((3-c-1)/2) + A131941(c+1)*floor((3-c)/2)) + S(c+1,3c+2,3), 0 <= c < 3 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
Previous Showing 31-40 of 92 results. Next