A261767
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 7, 18, 8, 1, 15, 99, 64, 30, 1, 31, 510, 560, 300, 144, 1, 63, 2745, 4800, 3150, 1728, 840
Offset: 0
T(3, 2) = 18 because there are 18 subpermutations on {1,2,3} whose orbits are each of size at most 2 with at least one orbit of size exactly 2, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (123 --> 213), (123 --> 321), (123 --> 132); (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2); (13-->23), (12-->32), (23-->13), (32-->33), (23-->21), (13-->12).
Triangle starts:
1;
1, 1;
1, 3, 3;
1, 7, 18, 8;
1, 15, 99, 64, 30;
1, 31, 510, 560, 300, 144;
...
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
A289147
Number of (n+1) X (n+1) binary matrices M with at most one 1 in each of the first n rows and each of the first n columns and M[n+1,n+1] = 0.
Original entry on oeis.org
1, 5, 34, 286, 2840, 32344, 414160, 5876336, 91356544, 1542401920, 28075364096, 547643910400, 11389266525184, 251428006132736, 5869482147358720, 144413021660821504, 3733822274973040640, 101181690628832198656, 2867011297057247002624, 84764595415605494743040
Offset: 0
a(1) = 5:
[0 0] [1 0] [0 1] [0 0] [0 1]
[0 0] [0 0] [0 0] [1 0] [1 0] .
.
a(2) = 34:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1]
[0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0]
.
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0]
[1 1 0] [0 0 0] [1 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0]
.
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0]
[1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0]
.
[0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 0]
[0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 0] [0 1 0] [0 0 0] [1 0 0] [0 0 0] [1 0 0]
.
[0 1 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0]
[1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 0]
[0 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0] [0 0 0] .
Cf.:
A000142,
A000165,
A000302,
A002720,
A025167,
A084771,
A087912,
A102773,
A160611,
A160612,
A277382.
-
a:= proc(n) option remember; `if`(n<2, 4*n+1,
(2*n+3)*a(n-1)-(n-1)^2*a(n-2))
end:
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n-> n! * add(binomial(n, i)*4^i/i!, i=0..n):
seq(a(n), n=0..25);
# third Maple program:
a:= n-> n!* simplify(LaguerreL(n, -4), 'LaguerreL'):
seq(a(n), n=0..25);
-
Table[n! LaguerreL[n, -4], {n, 0, 30}] (* Indranil Ghosh, Jul 06 2017 *)
-
from mpmath import *
mp.dps=150
l=chop(taylor(lambda x:exp(4*x/(1-x))/(1-x), 0, 31))
print([int(fac(i)*l[i]) for i in range(len(l))]) # Indranil Ghosh, Jul 06 2017
# or #
from mpmath import *
mp.dps=100
def a(n): return int(fac(n)*laguerre(n, 0, -4))
print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 06 2017
A326252
Number of digraphs with vertices {1..n} whose increasing edges are crossing.
Original entry on oeis.org
0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0
Simple graphs whose edges are crossing are
A326210.
Digraphs whose increasing edges are not crossing are
A326251.
Digraphs whose edges are not crossing are
A326237.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
A331432
Triangle T(n,k) (n >= k >= 0) read by rows: T(n,0) = (1+(-1)^n)/2; for k>=1, set T(0,k) = 0, S(n,k) = binomial(n,k)*binomial(n+k+1,k), and for n>=1, T(n,k) = S(n,k)-T(n-1,k).
Original entry on oeis.org
1, 0, 3, 1, 5, 10, 0, 10, 35, 35, 1, 14, 91, 189, 126, 0, 21, 189, 651, 924, 462, 1, 27, 351, 1749, 4026, 4290, 1716, 0, 36, 594, 4026, 13299, 22737, 19305, 6435, 1, 44, 946, 8294, 36751, 89375, 120835, 85085, 24310, 0, 55, 1430, 15730, 89375, 289003, 551837, 615043, 369512, 92378, 1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716
Offset: 0
Triangle begins:
1;
0, 3;
1, 5, 10;
0, 10, 35, 35;
1, 14, 91, 189, 126;
0, 21, 189, 651, 924, 462;
1, 27, 351, 1749, 4026, 4290, 1716;
0, 36, 594, 4026, 13299, 22737, 19305, 6435;
1, 44, 946, 8294, 36751, 89375, 120835, 85085, 24310;
0, 55, 1430, 15730, 89375, 289003, 551837, 615043, 369512, 92378;
1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716;
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
Taking the component-wise sums of the rows by pairs give the triangle in
A178303.
Ser's tables I and III are
A331430 and
A331431 (both are still mysterious).
-
SS := (n,k)->binomial(n,k)*binomial(n+k+1,k);
T4:=proc(n,k) local i; global SS; option remember;
if k=0 then return((1+(-1)^n)/2); fi;
if n=0 then 0 else SS(n,k)-T4(n-1,k); fi; end;
rho:=n->[seq(T4(n,k),k=0..n)];
for n from 0 to 14 do lprint(rho(n)); od:
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0, (1 + (-1)^n)/2, Binomial[n, k]*Binomial[n+k+1, k] - T[n-1, k]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
def T(n,k): # A331432
if (n<0): return 0
elif (k==0): return ((n+1)%2)
else: return binomial(n,k)*binomial(n+k+1,k) - T(n-1,k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
A119400
a(n) = Sum_{k=0..n} (n!/k!)^2*binomial(n,k).
Original entry on oeis.org
1, 2, 13, 172, 3809, 126526, 5874517, 362848088, 28744087297, 2839192902874, 341922922464701, 49297062811573732, 8380916229314577313, 1658770724530766046422, 378056469777362366873989, 98286603829297813268996176, 28907477297195536067142301697
Offset: 0
-
Table[Sum[(n!/k!)^2*Binomial[n, k], {k, 0, n}], {n, 0, 16}] (* Stefan Steinerberger, Jun 17 2007 *)
-
a(n)=n!^3*polcoeff(exp(x+x*O(x^n))*sum(m=0, n, x^m/m!^3), n)
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 27 2012
A121629
Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^2*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
Original entry on oeis.org
1, 3, 16, 121, 1179, 14026, 196783, 3177861, 58019356, 1181098459, 26515026561, 650572403218, 17316566815441, 496889918749251, 15288155067806104, 502024850361876481, 17522822345606176083, 647790109599863145106, 25283238154309049107231
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(((1-2*x)^(-1/2))-1)/(1-2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
-
CoefficientList[Series[E^(((1-2*x)^(-1/2))-1)/(1-2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 29 2013 *)
-
x='x+O('x^30); Vec(serlaplace(exp(((1-2*x)^(-1/2))-1)/(1-2*x))) \\ G. C. Greubel, May 17 2018
A176120
Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!.
Original entry on oeis.org
1, 1, 2, 1, 3, 7, 1, 4, 13, 34, 1, 5, 21, 73, 209, 1, 6, 31, 136, 501, 1546, 1, 7, 43, 229, 1045, 4051, 13327, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114
Offset: 0
Triangle begins
1;
1, 2;
1, 3, 7;
1, 4, 13, 34;
1, 5, 21, 73, 209;
1, 6, 31, 136, 501, 1546;
1, 7, 43, 229, 1045, 4051, 13327;
1, 8, 57, 358, 1961, 9276, 37633, 130922;
1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729;
1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114;
1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231;
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46.
-
A176120:=func< n,k| (&+[Factorial(j)*Binomial(n,j)*Binomial(k,j): j in [0..k]]) >;
[A176120(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
A176120 := proc(i,j)
add(binomial(i,k)*binomial(j,k)*k!,k=0..j) ;
end proc: # R. J. Mathar, Jul 28 2016
-
T[n_, m_]:= T[n,m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
def A176120(n,k): return sum(factorial(j)*binomial(n,j)*binomial(k,j) for j in (0..k))
flatten([[A176120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
A182924
Generalized vertical Bell numbers of order 4.
Original entry on oeis.org
1, 52, 43833, 149670844, 1346634725665, 25571928251231076, 893591647147188285577, 52327970757667659912764908, 4796836032234830356783078467969, 653510798275634770675047022800897940, 127014654376520087360456517007106313763801
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..129
- P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, arXiv:1010.0354 [math.CO], 2010-2011.
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
-
A182924 := proc(n) exp(-x)*GAMMA(n+1)^4*hypergeom([n+1,n+1,n+1,n+1],[1,1,1,1],x): simplify(subs(x=1, %)) end;
seq(A182924(i),i=0..10);
-
fallfac[n_, k_] := Pochhammer[n-k+1, k]; f[m_][n_, k_] := (-1)^k/k!* Sum[(-1)^p*Binomial[k, p]*fallfac[p, m]^n, {p, m, k}]; a[n_] := Sum[f[n][5, k], {k, n, 5*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 05 2012 *)
A182933
Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0
-
A182933_AsSquareArray := proc(n,k) local r,s,i;
r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
-
a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
A216831
a(n) = Sum_{k=0..n} binomial(n,k)^3 * k!.
Original entry on oeis.org
1, 2, 11, 88, 905, 11246, 162607, 2668436, 48830273, 983353690, 21570885011, 511212091952, 13001401709881, 352856328962918, 10170853073795975, 310093415465876716, 9964607161173899777, 336439048405066012466, 11902368222382731461083, 440122520333417057761160
Offset: 0
-
Table[Sum[Binomial[n, k]^3*k!, {k, 0, n}], {n, 0, 25}]
Table[HypergeometricPFQ[{-n, -n, -n}, {1}, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 28 2016 *)
-
a(n) = sum(k=0, n, binomial(n,k)^3 * k!); \\ Michel Marcus, May 04 2021
Comments