1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
A006295
Number of genus 1 rooted maps with 2 faces with n vertices.
Original entry on oeis.org
10, 167, 1720, 14065, 100156, 649950, 3944928, 22764165, 126264820, 678405090, 3550829360, 18182708362, 91392185080, 452077562620, 2205359390592, 10627956019245, 50668344988068, 239250231713210, 1120028580999440, 5202779260636958, 23998704563581000, 109991785264412452
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
-
Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (11 + 12 x + 9 Sqrt[1 - 4 x]) / (4 (4 x - 1)^4), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A006295_ser(N) = {
my(y = A000108_ser(N+1)); y*(y-1)^3*(y^2 + 15*y - 6)/(y-2)^8;
};
Vec(A006295_ser(31)) \\ Gheorghe Coserea, Jun 04 2017
-
my(x = 'x + O('x^60)); Vec(x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4)) \\ Michel Marcus, Jun 05 2017
A006296
Number of genus 1 rooted maps with 3 faces with n vertices.
Original entry on oeis.org
70, 1720, 24164, 256116, 2278660, 17970784, 129726760, 875029804, 5593305476, 34225196720, 201976335288, 1156128848680, 6447533938280, 35155923872640, 187959014565840, 987658610225052, 5110652802256260, 26084524995672080, 131501187454625560, 655590388845975000, 3235463376771463288, 15820770680078552000, 76708503479715247920, 369046200766330733880, 1762793459781859039080, 8364468224596427692896, 39445646133672676352560, 184956513528952419546448, 862615498961026097997392, 4003067488703222112053760, 18489846573354278755829152, 85028133934182275077421180, 389398354121840111751946628, 1776360539933013004774353872, 8073622060225813990245976280, 36567311475673299914222851832
Offset: 4
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
-
Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A006296_ser(N) = {
my(y = A000108_ser(N+1));
-2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11;
};
Vec(A006296_ser(36)) \\ Gheorghe Coserea, Jun 04 2017
A020920
Expansion of 1/(1-4*x)^(9/2).
Original entry on oeis.org
1, 18, 198, 1716, 12870, 87516, 554268, 3325608, 19122246, 106234700, 573667380, 3024791640, 15628090140, 79342611480, 396713057400, 1957117749840, 9540949030470, 46021048264620, 219878341708740, 1041528987041400, 4895186239094580, 22844202449108040
Offset: 0
Cf.
A000302,
A000332,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A038845,
A038846,
A046521 (fifth column).
-
List([0..30], n-> Binomial(n+4, 4)*Binomial(2*(n+4), n+4)/70) # G. C. Greubel, Jul 20 2019
-
[(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/105: n in [0..30]]; // Vincenzo Librandi, Jul 05 2013
-
seq(binomial(2*n+8, n+4)*binomial(n+4, n)/70, n=0..30); # Zerinvary Lajos, May 05 2007
-
CoefficientList[Series[1/(1-4x)^(9/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+4; binomial(m, 4)*binomial(2*m, m)/70) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+4, 4)*binomial(2*(n+4), n+4)/70 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A068763
Irregular triangle of the Fibonacci polynomials of A011973 multiplied diagonally by the Catalan numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 6, 1, 14, 20, 6, 42, 70, 30, 2, 132, 252, 140, 20, 429, 924, 630, 140, 5, 1430, 3432, 2772, 840, 70, 4862, 12870, 12012, 4620, 630, 14, 16796, 48620, 51480, 24024, 4620, 252, 58786, 184756, 218790
Offset: 0
The irregular triangle begins:
n\m 0 1 2 3 4 5
0: 1
1: 1 1
2: 2 2
3: 5 6 1
4: 14 20 6
5: 42 70 30 2
6: 132 252 140 20
7: 429 924 630 140 5
8: 1430 3432 2772 840 70
9: 4862 12870 12012 4620 630 14
10: 16796 48620 51480 24024 4620 252
...
p(3,x) = 5 + 6*x + x^2.
Cf.
A000007(n) (alternating row sums).
-
nn = 10; b[z_] := (1 - Sqrt[1 - 4 z])/(2 z);Map[Select[#, # > 0 &] &,
CoefficientList[Series[v b[v z] /. v -> (1 + u z ), {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Jul 24 2020 *)
A177267
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 14, 10, 0, 0, 42, 70, 8, 0, 0, 132, 420, 168, 0, 0, 0, 429, 2310, 2121, 180, 0, 0, 0, 1430, 12012, 20790, 6088, 0, 0, 0, 0, 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, 0, 0, 0, 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0
Offset: 1
T(3,1)=1 because 312 is the only permutation of {1,2,3} with genus 1 (we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1).
Triangle starts:
[ 1] 1,
[ 2] 2, 0,
[ 3] 5, 1, 0,
[ 4] 14, 10, 0, 0,
[ 5] 42, 70, 8, 0, 0,
[ 6] 132, 420, 168, 0, 0, 0,
[ 7] 429, 2310, 2121, 180, 0, 0, 0,
[ 8] 1430, 12012, 20790, 6088, 0, 0, 0, 0,
[ 9] 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0,
[10] 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0,
[11] 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, ...,
[12] 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0, ...,
[13] 742900, 29745716, 368588220, 1700309468, 2788065280, 1271140416, 68428800, 0, ...,
...
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178517 (genus of non-derangement permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations),
A218538 (genus of permutations avoiding [x,x+1]).
-
n := 8: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n
# second Maple program:
b:= proc(n) option remember; `if`(n<2, 1, ((4*n-2)*
b(n-1)+(n-2)*(n-1)^2*expand(x*b(n-2)))/(n+1))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, Feb 16 2024
-
T[ n_, k_] := If[ n < 1 || k >= n, 0, Module[{pn = Table[i, {i, n}]}, Do[ pn[[i]] = ((4 i - 2) pn[[i - 1]] + x (i - 2) (i - 1)^2 pn[[i - 2]])/(i + 1) // Expand, {i, 3, n}]; Coefficient[pn[[n]], x, k]]]; (* Michael Somos, Sep 02 2017 *)
Terms for rows 12 and 13 from
Joerg Arndt, Jan 24 2011.
A287046
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 1.
Original entry on oeis.org
12012, 649950, 17970784, 344468530, 5188948072, 65723863196, 729734918432, 7302676928666, 67173739068760, 576218752277476, 4660202610532480, 35839052357422132, 263868150558327376, 1870153808268516280, 12816868756802256832, 85256107136168684650, 552171259884681058744
Offset: 7
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 1];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287046_ser(N) = {
my(y = A000108_ser(N+1));
2*y*(y-1)^7*(28457*y^6 + 179171*y^5 - 222214*y^4 - 172512*y^3 + 257232*y^2 - 59904*y - 4224)/(y-2)^20;
};
Vec(A287046_ser(17))
A287047
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 1.
Original entry on oeis.org
60060, 3944928, 129726760, 2908358552, 50534154408, 729734918432, 9145847808784, 102432266545800, 1046677747672360, 9908748651241088, 87930943305742512, 738178726378902064, 5905479331377981200, 45289976937922983360, 334600965220354244896, 2391127223524518889064, 16585285393291515557928
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 1];
Table[a[n], {n, 8, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287047_ser(N) = {
my(y = A000108_ser(N+1));
-4*y*(y-1)^8*(184142*y^7 + 1083793*y^6 - 1540136*y^5 - 1481152*y^4 + 2626176*y^3 - 737232*y^2 - 184896*y + 64320)/(y-2)^23;
};
Vec(A287047_ser(17))
A287048
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 1.
Original entry on oeis.org
291720, 22764165, 875029804, 22620890127, 448035881592, 7302676928666, 102432266545800, 1274461449989715, 14373136466094880, 149314477245194262, 1446563778096423816, 13196809961724011350, 114253624700659216080, 944690705838217837620, 7498935691376059259344, 57398464959432306918747
Offset: 9
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 1];
Table[a[n], {n, 9, 25}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287048_ser(N) = {
my(y = A000108_ser(N+1));
y*(y-1)^9*(9370183*y^8 + 52321971*y^7 - 83853806*y^6 - 93946092*y^5 + 189910936*y^4 - 57493776*y^3 - 31383264*y^2 + 16878912*y - 1513344)/(y-2)^26;
};
Vec(A287048_ser(16))
Comments