cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 86 results. Next

A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 8, 11, 12, 11, 8, 4, 1, 1, 4, 8, 11, 12, 12, 12, 12, 11, 8, 4, 1, 1, 4, 8, 12, 16, 19, 20, 20, 19, 16, 12, 8, 4, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row n is row n! of A146291. Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  1
  1  2  2  2  1
  1  3  4  4  3  1
  1  3  5  6  6  5  3  1
  1  4  8 11 12 11  8  4  1
  1  4  8 11 12 12 12 12 11  8  4  1
  1  4  8 12 16 19 20 20 19 16 12  8  4  1
Row n = 6 counts the following divisors:
  1  2   4   8  16   48  144  720
     3   6  12  24   72  240
     5   9  18  36   80  360
        10  20  40  120
        15  30  60  180
            45  90
Row n = 7 counts the following divisors:
  1  2   4    8   16   48   144   720  5040
     3   6   12   24   72   240  1008
     5   9   18   36   80   336  1680
     7  10   20   40  112   360  2520
        14   28   56  120   504
        15   30   60  168   560
        21   42   84  180   840
        35   45   90  252  1260
             63  126  280
             70  140  420
            105  210  630
                 315
		

Crossrefs

A000720 is column k = 1.
A008302 is the version for superprimorials.
A022559 gives row lengths minus one.
A027423 gives row sums.
A146291 is the generalization to non-factorials.
A336499 is the restriction to divisors in A130091.
A000142 lists factorial numbers.
A336415 counts uniform divisors of n!.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]

A049433 Numbers k such that k! - (k-1)! - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 28, 78, 99, 184, 286, 291, 398, 411, 600, 718, 732, 889, 1963, 2240, 2242, 2533, 8800, 11403, 18335, 20277, 21029
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

There is no further term up to 1400. - Farideh Firoozbakht, Jul 18 2003
a(25) > 12000. [Donovan Johnson, Dec 18 2009]

Examples

			6 is a term since 6! - (6-1)! - 1 = 599 is prime.
		

Crossrefs

Formula

a(n) = A090704(n) + 1 = n*n! + 1 = ((n+1)-1)*n! + 1 = (n+1)! - n! + 1 .

Extensions

More terms from Farideh Firoozbakht, Jul 18 2003
Corrected offset, edited definition and a(19)-a(24) from Donovan Johnson, Dec 18 2009
a(25)-a(27) from Michael S. Branicky, Jun 13 2025

A055489 Largest number x such that sum of divisors of x is n!.

Original entry on oeis.org

5, 23, 95, 719, 5039, 39917, 361657, 3624941, 39904153, 479001599, 6226862869, 87178291199, 1307672080867, 20922780738961, 355687390376431, 6402373545694717, 121645099711277873, 2432902005056589697, 51090942157413850441
Offset: 3

Views

Author

Labos Elemer, Jun 28 2000

Keywords

Comments

For n = 1, a(1) = 1; for n = 2 there is no solution.
For n in A002982, a(n) = n!-1.

Examples

			For n = 6, the 15 solutions are as follows: {264, 270, 280, 354, 376, 406, 418, 435, 459, 478, 537, 623, 649, 667, 719}.
		

References

  • R. K. Guy (1981): Unsolved Problems In Number Theory, B39.

Crossrefs

Programs

  • PARI
    a(n) = {fn = n!; x = fn - 1; while(sigma(x) != fn, x--); x;} \\ Michel Marcus, Dec 17 2013

Formula

a(n) = Max{x; Sigma[x] = n!} = Max{x; A000203(x) = A000142(n)}
a(n) = A057637(A000142(n)). - Ray Chandler, Jan 15 2009
a(A002982(n)) = A000142(A002982(n)) - 1. - Ray Chandler, Jan 15 2009

Extensions

More terms from Jud McCranie, Oct 09 2000
a(15) from Donovan Johnson, Aug 31 2008
a(16)-a(19) from Donovan Johnson, Nov 22 2008
a(20)-a(52) from Ray Chandler, Jan 15 2009

A064144 a(n) is the number of divisors of n!+1.

Original entry on oeis.org

2, 2, 2, 3, 3, 4, 3, 4, 8, 4, 2, 6, 4, 4, 8, 32, 8, 64, 4, 4, 8, 8, 12, 4, 4, 4, 2, 4, 8, 32, 16, 16, 32, 4, 32, 64, 2, 4, 16, 128, 2, 8, 16, 8, 8, 8, 16, 4, 32, 32, 64, 16, 16, 4, 4, 16, 8, 16, 4, 16, 16, 8, 32, 8
Offset: 1

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! + 1]], {n, 1, 40} ]
  • PARI
    a(n) = numdiv(n! + 1); \\ Harry J. Smith, Sep 09 2009
    
  • Python
    from math import factorial
    from sympy import divisor_count
    def A064144(n): return divisor_count(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = tau(n!+1).

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(42)-a(64) from Harry J. Smith, Sep 09 2009
Edited by Jon E. Schoenfield, Jun 21 2018

A088054 Factorial primes: primes which are within 1 of a factorial number.

Original entry on oeis.org

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 02 2003

Keywords

Comments

Conjecture: 3 is the intersection of A002981 and A002982.

Examples

			3! + 1 = 7; 7! - 1 = 5039.
39916801 is a term because 11! + 1 is prime.
		

Crossrefs

Union of A055490 and A088332.

Programs

  • Mathematica
    t = {}; Do[ If[PrimeQ[n! - 1], AppendTo[t, n! - 1]]; If[PrimeQ[n! + 1], AppendTo[t, n! + 1]], {n, 50}]; t (* Robert G. Wilson v *)
    Union[Select[Range[50]!-1, PrimeQ], Select[Range[50]!+1, PrimeQ]] (Noe)
    fp[n_] := Module[{nf=n!}, Select[{nf-1,nf+1},PrimeQ]]; Flatten[ Table[ fp[i],{i,50}]] (* Harvey P. Dale, Dec 18 2010 *)
    Select[Flatten[#+{-1,1}&/@(Range[50]!)],PrimeQ] (* Harvey P. Dale, Apr 08 2019 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A088054_gen(): # generator of terms
        f = 1
        for k in count(1):
            f *= k
            if isprime(f-1):
                yield f-1
            if isprime(f+1):
                yield f+1
    A088054_list = list(islice(A088054_gen(),10)) # Chai Wah Wu, Feb 18 2022

Extensions

Corrected by Paul Muljadi, Oct 11 2005
More terms from Robert G. Wilson v and T. D. Noe, Oct 12 2005

A103317 Primes p such that p! - 1 is also prime.

Original entry on oeis.org

3, 7, 379, 6917, 208003
Offset: 1

Views

Author

Jonathan Sondow, Jan 31 2005

Keywords

Comments

The members are the primes in A002982 (n! - 1 is prime).

Examples

			3 is prime and 3! - 1 = 5 is prime, so 3 is a member.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.

Crossrefs

Programs

Extensions

a(5)=208003 (found on Jul 27 2016, by Sou Fukui), added by Jinyuan Wang, Jan 20 2020

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  0
  1  2  1  2  1
  1  3  1  3  2  0
  1  3  2  5  3  3  2  1
  1  4  2  7  4  4  3  2  0
  1  4  2  7  4  5  7  7  6  3  2  0
  1  4  2  8  8  9 10 11 11  7  8  5  2  0
  1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
  1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
  1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
Row n = 7 counts the following divisors:
  1  2  4  8   16  48   144  720   {}
     3  9  12  24  72   360  1008
     5     18  40  80   504
     7     20  56  112
           28
           45
           63
		

Crossrefs

A000720 is column k = 1.
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336414 gives row sums.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]

A073443 Numbers k such that k! - k - 1 is prime.

Original entry on oeis.org

3, 4, 10, 12, 346
Offset: 1

Views

Author

Rick L. Shepherd, Jul 31 2002

Keywords

Comments

Clearly n <> 2 (mod 3). For n>3, n!-n, n!-n+1, ..., n!-3, n!-2 is a sequence of n-1 consecutive composite numbers. Additional terms are greater than 2000.
a(5) > 7500. - Michael S. Branicky, Mar 04 2021
a(5) > 24000. - Michael S. Branicky, Nov 13 2024

Crossrefs

Cf. A073444 (corresponding primes), A002982 (n!-1 is prime), A073308 (n!+n+1 is prime).

Programs

  • Mathematica
    Select[Range[3, 346], PrimeQ[#! - # - 1] &] (* Arkadiusz Wesolowski, Jan 04 2012 *)
  • PARI
    for(n=3,2000,if(isprime(n!-n-1),print1(n,",")))
    
  • Python
    from math import factorial
    from sympy import isprime
    def ok(n): return isprime(factorial(n) - n - 1)
    print([m for m in range(3, 500) if ok(m)]) # Michael S. Branicky, Mar 04 2021

Extensions

Offset corrected by Arkadiusz Wesolowski, Jan 04 2012

A325704 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the numerator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 7, 1, 5, 1, 25, 2, 4, 1, 2, 1, 13, 13, 121, 1, 7, 1, 721, 3, 49, 1, 5, 1, 5, 61, 5041, 5, 3, 1, 40321, 361, 19, 1, 37, 1, 241, 7, 362881, 1, 9, 1, 4, 2521, 1441, 1, 5, 7, 73, 20161, 3628801, 1, 8, 1, 39916801, 25, 6, 121, 181, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the numerator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Numerator
  • PARI
    A325704(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/(primepi(f[i, 1])!))); }; \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A318573(A325709(n)).

A051855 Numbers n such that (n!)^4+1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 13, 112, 328, 11123
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime(Factorial(n)^4+1)]; // Vincenzo Librandi, Aug 15 2013
  • Mathematica
    Select[Range[0, 350], PrimeQ[(#!)^4 + 1]&] (* Vincenzo Librandi, Aug 15 2013 *)
  • PARI
    isok(n) = isprime(n!^4 + 1); \\ Michel Marcus, Aug 15 2013
    

Extensions

a(9) from Robert Price, Jul 24 2014
Prepended a(1)=0, Robert Price, Sep 01 2014
Previous Showing 41-50 of 86 results. Next