0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 2, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 1, 2, 1, 3, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0
Offset: 0
A329738
Number of compositions of n whose run-lengths are all equal.
Original entry on oeis.org
1, 1, 2, 4, 6, 8, 19, 24, 45, 75, 133, 215, 401, 662, 1177, 2035, 3587, 6190, 10933, 18979, 33339, 58157, 101958, 178046, 312088, 545478, 955321, 1670994, 2925717, 5118560, 8960946, 15680074, 27447350, 48033502, 84076143, 147142496, 257546243, 450748484, 788937192
Offset: 0
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(1111) (131) (51)
(212) (123)
(11111) (132)
(141)
(213)
(222)
(231)
(312)
(321)
(1122)
(1212)
(2121)
(2211)
(111111)
Compositions with relatively prime run-lengths are
A000740.
Compositions with equal multiplicities are
A098504.
Compositions with equal differences are
A175342.
Compositions with distinct run-lengths are
A329739.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@Split[#]&]],{n,0,10}]
-
seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ Andrew Howroyd, Dec 30 2020
A335452
Number of separations (Carlitz compositions or anti-runs) of the prime indices of n.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 6, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 0, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 0, 2, 1, 6, 2, 2, 2
Offset: 1
The a(n) separations for n = 2, 6, 30, 180:
(1) (12) (123) (12123)
(21) (132) (12132)
(213) (12312)
(231) (12321)
(312) (13212)
(321) (21213)
(21231)
(21312)
(21321)
(23121)
(31212)
(32121)
Permutations of prime indices are counted by
A008480.
Cf.
A000961,
A005117,
A056239,
A112798,
A181796,
A261962,
A333221,
A335451,
A335454,
A335465,
A335489.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]
-
F(i, j, r, t) = {sum(k=max(0, i-j), min(min(i,t), (i-j+t)\2), binomial(i, k)*binomial(r-i+1, t+i-j-2*k)*binomial(t-1, k-i+j))}
count(sig)={my(s=vecsum(sig), r=0, v=[1]); for(p=1, #sig, my(t=sig[p]); v=vector(s-r-t+1, j, sum(i=1, #v, v[i]*F(i-1, j-1, r, t))); r += t); v[1]}
a(n)={count(factor(n)[,2])} \\ Andrew Howroyd, Feb 03 2021
A345167
Numbers k such that the k-th composition in standard order is alternating.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 32, 33, 34, 38, 40, 41, 44, 45, 48, 49, 50, 54, 64, 65, 66, 68, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 102, 108, 109, 128, 129, 130, 132, 134, 140, 141, 144, 145, 148, 152, 153, 160, 161, 162
Offset: 1
The terms together with their binary indices begin:
1: (1) 25: (1,3,1) 66: (5,2)
2: (2) 32: (6) 68: (4,3)
4: (3) 33: (5,1) 70: (4,1,2)
5: (2,1) 34: (4,2) 72: (3,4)
6: (1,2) 38: (3,1,2) 76: (3,1,3)
8: (4) 40: (2,4) 77: (3,1,2,1)
9: (3,1) 41: (2,3,1) 80: (2,5)
12: (1,3) 44: (2,1,3) 81: (2,4,1)
13: (1,2,1) 45: (2,1,2,1) 82: (2,3,2)
16: (5) 48: (1,5) 88: (2,1,4)
17: (4,1) 49: (1,4,1) 89: (2,1,3,1)
18: (3,2) 50: (1,3,2) 96: (1,6)
20: (2,3) 54: (1,2,1,2) 97: (1,5,1)
22: (2,1,2) 64: (7) 98: (1,4,2)
24: (1,4) 65: (6,1) 102: (1,3,1,2)
Partitions with a permutation of this type:
A345170, complement
A345165.
Factorizations with a permutation of this type:
A348379.
A003242 counts anti-run compositions.
A345164 counts alternating permutations of prime indices.
Statistics of standard compositions:
- Number of maximal anti-runs is
A333381.
- Number of distinct parts is
A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are
A114994.
- Weakly increasing compositions (multisets) are
A225620.
- Non-alternating anti-runs are
A345169.
Cf.
A025048,
A025049,
A059893,
A106356,
A238279,
A335448,
A344604,
A344615,
A344653,
A344742,
A345163,
A348377.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Select[Range[0,100],wigQ@*stc]
A374249
Numbers k such that the k-th composition in standard order has its equal parts contiguous.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85
Offset: 1
The terms together with their standard compositions begin:
0: ()
1: (1)
2: (2)
3: (1,1)
4: (3)
5: (2,1)
6: (1,2)
7: (1,1,1)
8: (4)
9: (3,1)
10: (2,2)
11: (2,1,1)
12: (1,3)
14: (1,1,2)
15: (1,1,1,1)
16: (5)
See A374253 for the complement: 13, 22, 25, 27, 29, ...
Compositions of this type are counted by
A274174.
Permutations of prime indices of this type are counted by
A333175.
A066099 lists compositions in standard order.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
Cf.
A106356,
A124762,
A238130,
A238279,
A261982,
A272919,
A333382,
A335450,
A335460,
A335524,
A335525.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],UnsameQ@@First/@Split[stc[#]]&]
A333382
Number of adjacent unequal parts in the n-th composition in standard-order.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 0
The 46th composition in standard order is (2,1,1,2), with maximal runs ((2),(1,1),(2)), so a(46) = 3 - 1 = 2.
Indices of first appearances (not counting 0) are
A113835.
Partitions whose 0-appended first differences are a run are
A007862.
Partitions whose first differences are a run are
A049988.
A triangle counting maximal anti-runs of compositions is
A106356.
A triangle counting maximal runs of compositions is
A238279.
All of the following pertain to compositions in standard order (
A066099):
- Adjacent equal pairs are counted by
A124762.
- Weakly decreasing runs are counted by
A124765.
- Weakly increasing runs are counted by
A124766.
- Equal runs are counted by
A124767.
- Strictly increasing runs are counted by
A124768.
- Strictly decreasing runs are counted by
A124769.
- Strict compositions are ranked by
A233564.
- Constant compositions are ranked by
A272919.
- Normal compositions are ranked by
A333217.
- Anti-runs are counted by
A333381.
Cf.
A000005,
A000120,
A003242,
A029931,
A048793,
A059893,
A070939,
A114994,
A225620,
A228351,
A238424.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Length[Select[Partition[stc[n],2,1],UnsameQ@@#&]],{n,0,100}]
A006498
a(n) = a(n-1) + a(n-3) + a(n-4), a(0) = a(1) = a(2) = 1, a(3) = 2.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, 1156, 1870, 3025, 4895, 7921, 12816, 20736, 33552, 54289, 87841, 142129, 229970, 372100, 602070, 974169, 1576239, 2550409, 4126648, 6677056, 10803704, 17480761, 28284465, 45765225, 74049690, 119814916
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 15*x^7 + 25*x^8 + 40*x^9 + ...
From _Gus Wiseman_, Nov 27 2019: (Start)
The a(2) = 1 through a(7) = 15 subsets with no two elements differing by 2:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {3} {3} {3}
{1,2} {4} {4}
{2,3} {1,2} {5}
{1,4} {1,2}
{2,3} {1,4}
{3,4} {1,5}
{2,3}
{2,5}
{3,4}
{4,5}
{1,2,5}
{1,4,5}
(End)
- E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see pp. 157 and 172.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See pp. 16, 18.
- D. Applegate, M. LeBrun, and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Said Amrouche and Hacène Belbachir, Unimodality and linear recurrences associated with rays in the Delannoy triangle, Turkish Journal of Mathematics (2019) Vol. 44, 118-130.
- Joerg Arndt, Matters Computational (The Fxtbook), section 14.10.1, p.320.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
- V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yug. J. Oper. Res. 22 (2012) 183-198, Sec. 3
- G. E. Bergum and V. E. Hoggatt, Jr., A combinatorial problem involving recursive sequences and tridiagonal matrices, Fib. Quart., 16 (1978), 113-118.
- M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461.
- K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- T. Guardia and D. Jiménez, Fiboquadratic Sequences and Extensions of the Cassini Identity Raised From the Study of Rithmomachia, arXiv preprint arXiv:1509.03177 [math.HO], 2015-2016.
- John Konvalina, Yi-Hsin Liu, subsets without q-separation and binomial products of Fibonacci numbers, J. Comb. Theo. A 57 (2) (1991) 306-310, T_n.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301.
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Diagonal sums of number triangle
A059259.
Numbers whose binary expansion has no subsequence (1,0,1) are
A048716.
-
a006498 n = a006498_list !! n
a006498_list = 1 : 1 : 1 : 2 : zipWith (+) (drop 3 a006498_list)
(zipWith (+) (tail a006498_list) a006498_list)
-- Reinhard Zumkeller, Apr 07 2012
-
[ n eq 1 select 1 else n eq 2 select 1 else n eq 3 select 1 else n eq 4 select 2 else Self(n-1)+Self(n-3)+ Self(n-4): n in [1..40] ]; // Vincenzo Librandi, Aug 20 2011
-
LinearRecurrence[{1,0,1,1},{1,1,1,2},50] (* Harvey P. Dale, Jul 13 2011 *)
Table[Fibonacci[Floor[n/2] + 2]^Mod[n, 2]*Fibonacci[Floor[n/2] + 1]^(2 - Mod[n, 2]), {n, 0, 40}] (* David Nacin, Feb 29 2012 *)
a[ n_] := Fibonacci[ Quotient[ n+2, 2]] Fibonacci[ Quotient[ n+3, 2]] (* Michael Somos, Jan 19 2014 *)
Table[Length[Select[Subsets[Range[n]],!MatchQ[#,{_,x_,_,y_,_}/;x+2==y]&]],{n,10}] (* Gus Wiseman, Nov 27 2019 *)
-
{a(n) = fibonacci( (n+2)\2 ) * fibonacci( (n+3)\2 )} /* Michael Somos, Mar 10 2004 */
-
Vec(1/(1-x-x^3-x^4)+O(x^66))
-
def a(n, adict={0:1, 1:1, 2:1, 3:2}):
if n in adict:
return adict[n]
adict[n]=a(n-1)+a(n-3)+a(n-4)
return adict[n] # David Nacin, Mar 07 2012
A001522
Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
Offset: 0
For a(6)=5 we have the following stacks:
.x... ..x.. ...x. .xx.
xxxxx xxxxx xxxxx xxxx xxxxxx
.
From _Joerg Arndt_, Dec 09 2012: (Start)
There are a(9) = 14 smooth weakly unimodal compositions of 9:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 1 ]
03: [ 1 1 1 1 1 2 1 1 ]
04: [ 1 1 1 1 2 1 1 1 ]
05: [ 1 1 1 1 2 2 1 ]
06: [ 1 1 1 2 1 1 1 1 ]
07: [ 1 1 1 2 2 1 1 ]
08: [ 1 1 2 1 1 1 1 1 ]
09: [ 1 1 2 2 1 1 1 ]
10: [ 1 1 2 2 2 1 ]
11: [ 1 2 1 1 1 1 1 1 ]
12: [ 1 2 2 1 1 1 1 ]
13: [ 1 2 2 2 1 1 ]
14: [ 1 2 3 2 1 ]
(End)
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 2 ]
03: [ 1 1 1 1 2 2 1 ]
04: [ 1 1 1 2 2 1 1 ]
05: [ 1 1 1 2 2 2 ]
06: [ 1 1 2 2 1 1 1 ]
07: [ 1 1 2 2 2 1 ]
08: [ 1 2 2 1 1 1 1 ]
09: [ 1 2 2 2 1 1 ]
10: [ 1 2 2 2 2 ]
11: [ 2 2 1 1 1 1 1 ]
12: [ 2 2 2 1 1 1 ]
13: [ 2 2 2 2 1 ]
14: [ 3 3 3 ]
(End)
From _Joerg Arndt_, Mar 30 2014: (Start)
There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 1 2 2 ]
06: [ 1 1 1 1 2 1 1 1 ]
07: [ 1 1 1 1 2 2 1 ]
08: [ 1 1 1 2 1 1 1 1 ]
09: [ 1 1 1 2 2 1 1 ]
10: [ 1 1 1 2 2 2 ]
11: [ 1 1 2 1 1 1 1 1 ]
12: [ 1 1 2 2 1 1 1 ]
13: [ 1 1 2 2 2 1 ]
14: [ 1 1 2 2 3 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
- G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- A. Blecher and A. Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Erich Friedman, Illustration of initial terms
- A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
Conjectured to be column k = 1 of
A352833.
These partitions (positive crank) are ranked by
A352874.
A064391 counts partitions by crank.
A257989 gives the crank of the partition with Heinz number n.
-
b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0),
`if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+
`if`(t, b(n-(i+1), i+1, t), 0)))
end:
a:= n-> b(n-1, 1, true):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014
# second Maple program:
A001522 := proc(n)
local r,a;
a := 0 ;
if n = 0 then
return 1 ;
end if;
for r from 1 do
if r*(r+1) > 2*n then
return a;
else
a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ;
end if;
end do:
end proc: # R. J. Mathar, Mar 07 2015
-
max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
Table[If[n==0,1,Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],OddQ@*Length],ici]]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
-
N=66; q='q+O('q^N);
Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1,n-1,1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
-
def A001522(n):
if n < 4: return 1
return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2
[A001522(n) for n in range(30)] # Peter Luschny, Sep 15 2014
Comments