cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A008315 Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 3,  2;
  1, 4,  5;
  1, 5,  9,  5;
  1, 6, 14, 14;
  1, 7, 20, 28, 14;
  ...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - _Geoffrey Critzer_, Jul 31 2009
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.

Crossrefs

T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].

Programs

  • Haskell
    a008315 n k = a008315_tabf !! n !! k
    a008315_row n = a008315_tabf !! n
    a008315_tabf = map reverse a008313_tabf
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, n-2*k):
    seq(seq(T(n, k), k=0..n/2), n=0..16);  # Alois P. Heinz, Oct 14 2022
  • Mathematica
    Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
  • PARI
    {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
    

Formula

T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011

Extensions

Expanded description from Clark Kimberling, Jun 15 1997

A059365 Another version of the Catalan triangle: T(r,s) = binomial(2*r-s-1,r-1) - binomial(2*r-s-1,r), r>=0, 0 <= s <= r.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44
Offset: 0

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Triangle starts
  0;
  0,    1;
  0,    1,    1;
  0,    2,    2,    1;
  0,    5,    5,    3,    1;
  0,   14,   14,    9,    4,    1;
  0,   42,   42,   28,   14,    5,   1;
  0,  132,  132,   90,   48,   20,   6,   1;
  0,  429,  429,  297,  165,   75,  27,   7,  1;
  0, 1430, 1430, 1001,  572,  275, 110,  35,  8, 1;
  0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1;
  ...
		

Crossrefs

See also the triangle in A009766. First 2 diagonals both give A000108, next give A000245, A002057.
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Essentially the same as A033184.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A053121, A059365, A099039, A106566, A130020, A047072, A171567, A181645.

Programs

  • Magma
    /* as triangle */ [[[0] cat [Binomial(2*r-s-1, r-1)- Binomial(2*r-s-1, r): s in [1..r]]: r in [0..10]]]; // Vincenzo Librandi, Jan 09 2017
  • Mathematica
    Table[Binomial[2*r - s - 1, r - 1] - Binomial[2*r - s - 1, r], {r, 0, 10}, {s, 0, r}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
  • PARI
    tabl(nn) = { print(0); for (r=1, nn, for (s=0, r, print1(binomial(2*r-s-1,r-1)-binomial(2*r-s-1,r), ", ");); print(););}  \\ Michel Marcus, Nov 01 2013
    

Formula

Essentially the same triangle as [0, 1, 1, 1, 1, 1, 1, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938, but the first term is T(0,0) = 0.

A000588 a(n) = 7*binomial(2n,n-3)/(n+4).

Original entry on oeis.org

0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0

Views

Author

Keywords

Comments

a(n-5) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 6 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=3. Example: For n=3 there is only one path EEENNN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+3,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026014.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015

Formula

Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
a(n) = A000108(n+3) - 5*A000108(n+2) + 6*A000108(n+1) - A000108(n). - Taras Goy, Dec 21 2024

Extensions

More terms from N. J. A. Sloane, Jul 13 2010

A001392 a(n) = 9*binomial(2n,n-4)/(n+5).

Original entry on oeis.org

1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
Offset: 4

Views

Author

Keywords

Comments

Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

Formula

Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Harvey P. Dale, Mar 03 2011

A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).

Original entry on oeis.org

1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640, 160878516023680, 622147386185325
Offset: 3

Views

Author

Keywords

Comments

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [8*Binomial(2*n+1,n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
    CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
  • PARI
    {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
    

Formula

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e.: a(n+3) = Integral_{x=0..4} x^n*W(x) dx, n >= 0, with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n).

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 1, 11, 65, 273, 910, 2548, 6188, 13260, 25194, 41990, 58786
Offset: 1

Views

Author

Keywords

Comments

This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  5;
  1, 4,  9,  14;
  1, 5, 14,  28,  42;
  1, 6, 20,  48,  90,  132;
  1, 7, 27,  75, 165,  297,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862;
		

Crossrefs

Alternate versions of (essentially) the same Catalan triangle: A009766, A033184, A047072, A059365, A099039, A106566, A130020.
Row sums give A071724.

Programs

  • Haskell
    a030237 n k = a030237_tabl !! n !! k
    a030237_row n = a030237_tabl !! n
    a030237_tabl = map init $ tail a009766_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [(n-k+1)*Binomial(n+k, k)/(n+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 17 2021
  • Maple
    A030237 := proc(n,m)
        (n-m+1)*binomial(n+m,m)/(n+1) ;
    end proc: # R. J. Mathar, May 31 2016
    # Compare the analogue algorithm for the Bell numbers in A011971.
    CatalanTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), P[-1]]);
    T := [op(T), P] od; T end: CatalanTriangle(6):
    ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
    # Alternative:
    ogf := n -> (1 - 2*x)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..11); # Peter Luschny, Mar 27 2022
  • Mathematica
    T[n_, k_]:= T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]];
    Table[T[n, k], {n,1,12}, {k,0,n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    T(n,k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018
    
  • Sage
    flatten([[(n-k+1)*binomial(n+k, k)/(n+1) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 17 2021
    

Formula

T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1).
Sum_{k=0..n-1} T(n,k) = A000245(n). - G. C. Greubel, Mar 17 2021
T(n, k) = [x^k] ((1 - 2*x)/(1 - x)^(n + 2)). - Peter Luschny, Mar 27 2022

Extensions

Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012

A003519 a(n) = 10*C(2n+1, n-4)/(n+6).

Original entry on oeis.org

1, 10, 65, 350, 1700, 7752, 33915, 144210, 600875, 2466750, 10015005, 40320150, 161280600, 641886000, 2544619500, 10056336264, 39645171810, 155989499540, 612815891050, 2404551645100, 9425842448792, 36921502679600, 144539291740025, 565588532895750, 2212449261033375
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n+5,n-4). - Emeric Deutsch, May 30 2004
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly twice. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly twice. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [10*Binomial(2*n+1, n-4)/(n+6): n in [4..35]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(10*binomial(2*n+1,n-4)/(n+6), n=4..50); # Robert Israel, Feb 02 2016
  • Mathematica
    Table[10 Binomial[2 n + 1, n - 4]/(n + 6), {n, 4, 28}] (* Michael De Vlieger, Feb 03 2016 *)
  • PARI
    a(n) = 10*binomial(2*n+1, n-4)/(n+6); \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: x^4*C(x)^10, where C(x)=[1-sqrt(1-4x)]/(2x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=9, a(n-5)=(-1)^(n-9)*coeff(charpoly(A,x),x^9). [Milan Janjic, Jul 08 2010]
a(n) = A214292(2*n,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
From Robert Israel, Feb 02 2016: (Start)
D-finite with recurrence a(n+1) = 2*(n+1)*(2n+3)/((n+7)*(n-3)) * a(n).
a(n) ~ 20 * 4^n/sqrt(Pi*n^3). (End)
E.g.f.: 5*BesselI(5,2*x)*exp(2*x)/x. - Ilya Gutkovskiy, Jan 23 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 34*Pi/(45*sqrt(3)) - 44/175.
Sum_{n>=4} (-1)^n/a(n) = 53004*log(phi)/(125*sqrt(5)) - 79048/875, where phi is the golden ratio (A001622). (End)

A047072 Array A read by diagonals: A(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no step touches the line y=x unless x=0 or x=h.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 3, 1, 1, 4, 5, 4, 5, 4, 1, 1, 5, 9, 5, 5, 9, 5, 1, 1, 6, 14, 14, 10, 14, 14, 6, 1, 1, 7, 20, 28, 14, 14, 28, 20, 7, 1, 1, 8, 27, 48, 42, 28, 42, 48, 27, 8, 1, 1, 9, 35, 75, 90, 42, 42, 90, 75, 35, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Array, A(n, k), begins as:
  1, 1,  1,  1,  1,   1,   1,   1, ...;
  1, 2,  1,  2,  3,   4,   5,   6, ...;
  1, 1,  2,  2,  5,   9,  14,  20, ...;
  1, 2,  2,  4,  5,  14,  28,  48, ...;
  1, 3,  5,  5, 10,  14,  42,  90, ...;
  1, 4,  9, 14, 14,  28,  42, 132, ...;
  1, 5, 14, 28, 42,  42,  84, 132, ...;
  1, 6, 20, 48, 90, 132, 132, 264, ...;
Antidiagonals, T(n, k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  1,  1,  1;
  1,  2,  2,  2,  1;
  1,  3,  2,  2,  3,  1;
  1,  4,  5,  4,  5,  4,  1;
  1,  5,  9,  5,  5,  9,  5,  1;
  1,  6, 14, 14, 10, 14, 14,  6,  1;
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
    function A(n,k)
      if k eq n then return b(n);
      elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
      else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
      end if; return A;
    end function;
    // [[A(n,k): k in [0..12]]: n in [0..12]];
    T:= func< n,k | A(n-k, k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    A[, 0]= 1; A[0, ]= 1; A[h_, k_]:= A[h, k]= If[(k-1>h || k-1Jean-François Alcover, Mar 06 2019 *)
  • SageMath
    def A(n,k):
        if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
        elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
        else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
    def T(n,k): return A(n-k, k)
    # [[A(n,k) for k in range(12)] for n in range(12)]
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 13 2022

Formula

A(n, n) = 2*[n=0] - A002420(n),
A(n, n+1) = 2*A000108(n-1), n >= 1.
From G. C. Greubel, Oct 13 2022: (Start)
T(n, n-1) = A000027(n-2) + 2*[n<3], n >= 1.
T(n, n-2) = A000096(n-4) + 2*[n<5], n >= 2.
T(n, n-3) = A005586(n-6) + 4*[n<7] - 2*[n=3], n >= 3.
T(2*n, n) = 2*A000108(n-1) + 3*[n=0].
T(2*n-1, n-1) = T(2*n+1, n+1) = A000180(n).
T(3*n, n) = A025174(n) + [n=0]
Sum_{k=0..n} T(n, k) = 2*A063886(n-2) + [n=0] - 2*[n=1]
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n, k) = A047079(n). (End)

A130020 Triangle T(n,k), 0<=k<=n, read by rows given by [1,0,0,0,0,0,0,...] DELTA [0,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 14, 0, 1, 5, 14, 28, 42, 42, 0, 1, 6, 20, 48, 90, 132, 132, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 0
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2007

Keywords

Comments

Reflected version of A106566.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  2,   0;
  1, 3,  5,   5,   0;
  1, 4,  9,  14,  14,    0;
  1, 5, 14,  28,  42,   42,    0;
  1, 6, 20,  48,  90,  132,  132,    0;
  1, 7, 27,  75, 165,  297,  429,  429,    0;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430,    0;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862,  0;
  ...
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A047072, A059365, A099039, A106566, this sequence.
Cf. A000108 (Catalan numbers), A106566 (row reversal), A210736.

Programs

  • Magma
    A130020:= func< n,k | n eq 0 select 1 else (n-k)*Binomial(n+k-1, k)/n >;
    [A130020(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2022
    
  • Mathematica
    T[n_, k_]:= (n-k)Binomial[n+k-1, k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    {T(n, k) = if( k<0 || k>=n, n==0 && k==0, binomial(n+k, n) * (n-k)/(n+k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    @CachedFunction
    def A130020(n, k):
        if n==k: return add((-1)^j*binomial(n, j) for j in (0..n))
        return add(A130020(n-1, j) for j in (0..k))
    for n in (0..10) :
        [A130020(n, k) for k in (0..n)]  # Peter Luschny, Nov 14 2012
    

Formula

T(n, k) = A106566(n, n-k).
Sum_{k=0..n} T(n,k) = A000108(n).
T(n, k) = (n-k)*binomial(n+k-1, k)/n with T(0, 0) = 1. - Jean-François Alcover, Jun 14 2019
Sum_{k=0..floor(n/2)} T(n-k, k) = A210736(n). - G. C. Greubel, Jun 14 2022
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - z*c(x*z)) where c(z) = g.f. of A000108.

A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005

Examples

			Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
  1;
  0,    1;
  0,   -1,    1;
  0,    2,   -2,   1;
  0,   -5,    5,  -3,    1;
  0,   14,  -14,   9,   -4,   1;
  0,  -42,   42, -28,   14,  -5,  1;
  0,  132, -132,  90,  -48,  20, -6,  1;
  0, -429,  429, -297, 165, -75, 27, -7, 1;
Production matrix is
  0,  1,
  0, -1,  1,
  0,  1, -1,  1,
  0, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Cf. A106566 (unsigned version), A059365
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]];  Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    {T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017

Formula

T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005
Previous Showing 11-20 of 42 results. Next