cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 107 results. Next

A051626 Period of decimal representation of 1/n, or 0 if 1/n terminates.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0, 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 0, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

Keywords

Comments

Essentially same as A007732.
For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017

Examples

			From _M. F. Hasler_, Dec 14 2015: (Start)
a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion.
a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1.
a(7) = 6 because 1/7 = 0.{142857}* with a period of 6.
a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16.
a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End)
		

Crossrefs

Essentially same as A007732. Cf. A002371, A048595, A006883, A036275, A114205, A114206, A001913.

Programs

  • Maple
    A051626 := proc(n) local lpow,mpow ;
        if isA003592(n) then
           RETURN(0) ;
        else
           lpow:=1 ;
           while true do
              for mpow from lpow-1 to 0 by -1 do
                  if (10^lpow-10^mpow) mod n =0 then
                     RETURN(lpow-mpow) ;
                  fi ;
              od ;
              lpow := lpow+1 ;
           od ;
        fi ;
    end: # R. J. Mathar, Oct 19 2006
  • Mathematica
    r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]];
    d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i,1,90}] (* Hans Havermann, Oct 19 2006 *)
    fd[n_] := Block[{q},q = Last[First[RealDigits[1/n]]];If[IntegerQ[q], q = {}]; Length[q]];Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *)
    Table[Length[RealDigits[1/n][[1,-1]]],{n,90}] (* Harvey P. Dale, Jul 03 2011 *)
    a[n_] := If[ PowerMod[10, n, n] == 0, 0, MultiplicativeOrder[10, n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]]]; Array[a, 90] (* myself in A003592 and T. D. Noe in A007732 *) (* Robert G. Wilson v, Feb 20 2025 *)
  • PARI
    A051626(n)=if(1M. F. Hasler, Dec 14 2015
    
  • Python
    def A051626(n):
        if isA003592(n):
            return 0
        else:
            lpow=1
            while True:
                for mpow in range(lpow-1,-1,-1):
                    if (10**lpow-10**mpow) % n == 0:
                        return lpow-mpow
                lpow += 1 # Kenneth Myers, May 06 2016
    
  • Python
    from sympy import multiplicity, n_order
    def A051626(n): return 0 if (m:=(n>>(~n & n-1).bit_length())//5**multiplicity(5,n)) == 1 else n_order(10,m) # Chai Wah Wu, Aug 11 2022

Formula

a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers

A003591 Numbers of form 2^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 196, 224, 256, 343, 392, 448, 512, 686, 784, 896, 1024, 1372, 1568, 1792, 2048, 2401, 2744, 3136, 3584, 4096, 4802, 5488, 6272, 7168, 8192, 9604, 10976, 12544, 14336, 16384, 16807, 19208, 21952, 25088
Offset: 1

Views

Author

Keywords

Comments

A204455(7*a(n)) = 7, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

Crossrefs

Programs

  • GAP
    Filtered([1..30000],n->PowerMod(14,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003591 n = a003591_list !! (n-1)
    a003591_list = f $ singleton 1 where
       f s = y : f (insert (2 * y) $ insert (7 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..26000] | PrimeDivisors(n) subset [2,7]]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    fQ[n_] := PowerMod[14,n,n]==0; Select[Range[30000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(7),N=7^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    isA003591(n)=n>>=valuation(n,2);ispower(n,,&n);n==1||n==7 \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003591(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//7**i).bit_length() for i in range(integer_log(x,7)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(14*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*7)/((2-1)*(7-1)) = 7/3. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(2)*log(7)*n)) / sqrt(14). - Vaclav Kotesovec, Sep 22 2020
a(n) = 2^A025637(n) *7^A025664(n). - R. J. Mathar, Jul 06 2025

A033846 Numbers whose prime factors are 2 and 5.

Original entry on oeis.org

10, 20, 40, 50, 80, 100, 160, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 16000, 20000, 20480, 25000, 25600, 31250, 32000, 40000, 40960
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that Sum_{d prime divisor of k} 1/d = 7/10. - Benoit Cloitre, Apr 13 2002
Numbers k such that phi(k) = (2/5)*k. - Benoit Cloitre, Apr 19 2002
Numbers k such that Sum_{d|k} A008683(d)*A000700(d) = 7. - Carl Najafi, Oct 20 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033846 n = a033846_list !! (n-1)
    a033846_list = f (singleton (2*5)) where
       f s = m : f (insert (2*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n:n in [1..100000]| Set(PrimeDivisors(n)) eq {2,5}]; // Marius A. Burtea, May 10 2019
  • Maple
    A033846 := proc(n)
    if (numtheory[factorset](n) = {2,5}) then
       RETURN(n)
    fi: end:  seq(A033846(n),n=1..50000); # Jani Melik, Feb 24 2011
  • Mathematica
    Take[Union[Times@@@Select[Flatten[Table[Tuples[{2,5},n],{n,2,15}],1], Length[Union[#]]>1&]],45] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    isA033846(n)=factor(n)[,1]==[2,5]~ \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

a(n) = 10*A003592(n).
A143201(a(n)) = 4. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/4. - Amiram Eldar, Dec 22 2020

Extensions

Offset fixed by Reinhard Zumkeller, Sep 13 2011

A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1

Views

Author

Don Reble, Jun 28 2003

Keywords

Comments

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

Examples

			a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od
    end proc:
    seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
  • PARI
    a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

Formula

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

A003594 Numbers of the form 3^i*7^j with i, j >= 0.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 49, 63, 81, 147, 189, 243, 343, 441, 567, 729, 1029, 1323, 1701, 2187, 2401, 3087, 3969, 5103, 6561, 7203, 9261, 11907, 15309, 16807, 19683, 21609, 27783, 35721, 45927, 50421, 59049, 64827, 83349, 107163, 117649
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([1..120000],n->PowerMod(21,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003594 n = a003594_list !! (n-1)
    a003594_list = f $ singleton 1 where
       f s = y : f (insert (3 * y) $ insert (7 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..120000] | PrimeDivisors(n) subset [3,7]]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    f[upto_]:=Sort[Select[Flatten[3^First[#] 7^Last[#] & /@ Tuples[{Range[0, Floor[Log[3, upto]]], Range[0, Floor[Log[7, upto]]]}]], # <= upto &]]; f[120000]  (* Harvey P. Dale, Mar 04 2011 *)
    fQ[n_] := PowerMod[21, n, n] == 0; Select[Range[120000], fQ] (* Bruno Berselli, Sep 24 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(7),N=7^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003594(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//7**i,3)[0]+1 for i in range(integer_log(x,7)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(21*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*7)/((3-1)*(7-1)) = 7/4. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(3)*log(7)*n)) / sqrt(21). - Vaclav Kotesovec, Sep 22 2020
a(n) = 3^A025642(n) * 7^A025665(n). - R. J. Mathar, Jul 06 2025

A036275 The periodic part of the decimal expansion of 1/n. Any initial 0's are to be placed at end of cycle.

Original entry on oeis.org

0, 0, 3, 0, 0, 6, 142857, 0, 1, 0, 90, 3, 769230, 714285, 6, 0, 5882352941176470, 5, 526315789473684210, 0, 476190, 45, 4347826086956521739130, 6, 0, 384615, 370, 571428, 3448275862068965517241379310, 3, 322580645161290, 0, 30, 2941176470588235, 285714, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 iff n = 2^i*5^j (A003592). - Jon Perry, Nov 19 2014
a(n) = n iff n = 3 or 6 (see De Koninck & Mercier reference). - Bernard Schott, Dec 02 2020

Examples

			1/28 = .03571428571428571428571428571428571428571... and digit-cycle is 571428, so a(28)=571428.
		

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 347 pp. 50 and 205, Ellipses, Paris, 2004.

Crossrefs

Programs

  • Maple
    isCycl := proc(n) local ifa,i ; if n <= 2 then RETURN(false) ; fi ; ifa := ifactors(n)[2] ; for i from 1 to nops(ifa) do if op(1,op(i,ifa)) <> 2 and op(1,op(i,ifa)) <> 5 then RETURN(true) ; fi ; od ; RETURN(false) ; end: A036275 := proc(n) local ifa,sh,lpow,mpow,r ; if not isCycl(n) then RETURN(0) ; else lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then r := (10^lpow-10^mpow)/n ; r := r mod (10^(lpow-mpow)-1) ; while r*10 < 10^(lpow-mpow) do r := 10*r ; od ; RETURN(r) ; fi ; od ; lpow := lpow+1 ; od ; fi ; end: for n from 1 to 60 do printf("%d %d ",n,A036275(n)) ; od ; # R. J. Mathar, Oct 19 2006
  • Mathematica
    fc[n_]:=Block[{q=RealDigits[1/n][[1,-1]]},If[IntegerQ[q],0,While[First[q]==0,q=RotateLeft[q]];FromDigits[q]]];
    Table[fc[n],{n,36}] (* Ray Chandler, Nov 19 2014, corrected Jun 27 2017 *)
    Table[FromDigits[FindTransientRepeat[RealDigits[1/n,10,120][[1]],3] [[2]]],{n,40}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2019 *)

Extensions

Corrected and extended by N. J. A. Sloane
Corrected a(92), a(208), a(248), a(328), a(352) and a(488) which missed a trailing zero (see the table). - Philippe Guglielmetti, Jun 20 2017

A003595 Numbers of the form 5^i*7^j with i, j >= 0.

Original entry on oeis.org

1, 5, 7, 25, 35, 49, 125, 175, 245, 343, 625, 875, 1225, 1715, 2401, 3125, 4375, 6125, 8575, 12005, 15625, 16807, 21875, 30625, 42875, 60025, 78125, 84035, 109375, 117649, 153125, 214375, 300125, 390625, 420175, 546875, 588245, 765625, 823543, 1071875, 1500625
Offset: 1

Views

Author

Keywords

Comments

Successive k such that phi(35*k) = 24*k: 35*a(n) = A033851(n). - Artur Jasinski, Nov 09 2008

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003595 n = a003595_list !! (n-1)
    a003595_list = f $ singleton 1 where
       f s = y : f (insert (5 * y) $ insert (7 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..600000] | PrimeDivisors(n) subset [5,7]]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    a = {}; Do[If[EulerPhi[35 k] == 24 k, AppendTo[a, k]], {k, 1, 10000}]; a (* Artur Jasinski, Nov 09 2008 *)
    fQ[n_] := PowerMod[35, n, n] == 0; Select[Range[600000], fQ] (* Bruno Berselli, Sep 24 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(7),N=7^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003595(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//7**i,5)[0]+1 for i in range(integer_log(x,7)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = (5*7)/((5-1)*(7-1)) = 35/24. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(5)*log(7)*n)) / sqrt(35). - Vaclav Kotesovec, Sep 22 2020
a(n) = 5^A025652(n) * 7^A025667(n). - R. J. Mathar, Jul 06 2025

A108090 Numbers of the form (11^i)*(13^j).

Original entry on oeis.org

1, 11, 13, 121, 143, 169, 1331, 1573, 1859, 2197, 14641, 17303, 20449, 24167, 28561, 161051, 190333, 224939, 265837, 314171, 371293, 1771561, 2093663, 2474329, 2924207, 3455881, 4084223, 4826809, 19487171, 23030293, 27217619
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108090 n = a108090_list !! (n-1)
    a108090_list = f $ singleton (1,0,0) where
       f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),t); for(j=0,logint(lim\=1,13), t=13^j; while(t<=lim, listput(v,t); t*=11)); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
    
  • Python
    from sympy import integer_log
    def A108090(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,11)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - Vaclav Kotesovec, Sep 23 2020

A352154 Numbers m such that the decimal expansion of 1/m contains the digit 0, ignoring leading and trailing 0's.

Original entry on oeis.org

11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 57, 58, 59, 61, 62, 63, 67, 68, 69, 71, 73, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive.
Some subsequences:
{11, 111, 1111, ...} = A002275 \ {0, 1}
{33, 333, 3333, ...} = A002277 \ {0, 3}.
{77, 777, 7777, ...} = A002281 \ {0, 7}
{11, 101, 1001, 10001, ...} = A000533 \ {1}.

Examples

			m = 13 is a term since 1/13 = 0.0769230769230769230... has a periodic part = '07692307' or '76923070' with a 0.
m = 14 is not a term since 1/14 = 0.0714285714285714285... has a periodic part = '714285' which has no 0 (the only 0 is a leading 0).
		

Crossrefs

Similar with smallest digit k: this sequence (k=0), A352155 (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Maple
    removeInitial0:= proc(L) local i;
      for i from 1 to nops(L) do if L[i] <> 0 then return L[i..-1] fi od;
      []
    end proc:
    filter:= proc(n) local q;
      q:= NumberTheory:-RepeatingDecimal(1/n);
      member(0, removeInitial0(NonRepeatingPart(q))) or member(0, RepeatingPart(q))
    end proc:
    select(filter, [$1..300]); # Robert Israel, Apr 26 2023
  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 200, Min@ f@# == 0 &]

Formula

A352153(a(n)) = 0.

A132740 Largest divisor of n coprime to 10.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 11, 3, 13, 7, 3, 1, 17, 9, 19, 1, 21, 11, 23, 3, 1, 13, 27, 7, 29, 3, 31, 1, 33, 17, 7, 9, 37, 19, 39, 1, 41, 21, 43, 11, 9, 23, 47, 3, 49, 1, 51, 13, 53, 27, 11, 7, 57, 29, 59, 3, 61, 31, 63, 1, 13, 33, 67, 17, 69, 7, 71, 9, 73, 37, 3, 19, 77, 39, 79, 1, 81
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

Or: n with all factors of 2 and 5 removed. - M. F. Hasler, Apr 25 2017

Examples

			a(1050) = a(2*3*5*5*7) = 3*7 = 21.
		

Crossrefs

Programs

Formula

a(n) = A000265(A132739(n)) = A132739(A000265(n)) = n / A132741(n);
A051626(a(n)) = A051626(n); A007732(a(n)) = A007732(n);
a(A003592(n)) = 1.
Multiplicative with a(2^e) = 1, a(5^e) = 1 and a(p^e) = p^e for p = 3 and p >= 7.
Dirichlet g.f. zeta(s-1)*(2^s-2)*(5^s-5)/((2^s-1)*(5^s-1)). - R. J. Mathar, Sep 06 2011
Sum_{k=1..n} a(k) ~ (5/18) * n^2. - Amiram Eldar, Nov 28 2022

Extensions

Edited by M. F. Hasler, Apr 25 2017
Previous Showing 11-20 of 107 results. Next