cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A054040 a(n) terms of series {1/sqrt(j)} are >= n.

Original entry on oeis.org

1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 202, 217, 232, 247, 263, 280, 297, 314, 332, 351, 370, 389, 409, 430, 451, 472, 494, 517, 540, 563, 587, 612, 637, 662, 688, 715, 741, 769, 797, 825
Offset: 1

Views

Author

Asher Auel, Apr 13 2000

Keywords

Comments

In many cases the first differences have the form {2k, 2k, 2k, 2k+1} (A004524). In such cases the second differences are {0, 0, 1, 1}. See A082915 for the exceptions. In as many as these, the first differences have the form {2k-1, 2k-1, 2k-1, 2k}. - Robert G. Wilson v, Apr 18 2003 [Corrected by Carmine Suriano, Nov 08 2013]
a(100)=2574, a(1000)=250731 & a(10000)=25007302 which differs from Sum{i=4..104}A004524(i)=2625, Sum{i=4..1004}A004524(i)=251250 & Sum{i=4..10004}A004524(i)=25012500. - Robert G. Wilson v, Apr 18 2003
A054040(n) <= A011848(n+2), A054040(10000)=25007302 and A011848(n+2)=25007500. - Robert G. Wilson v, Apr 18 2003

Examples

			Let b(k) = 1 + 1/sqrt(2) + 1/sqrt(3) + ... + 1/sqrt(k):
.k.......1....2.....3.....4.....5.....6.....7
-------------------------------------------------
b(k)...1.00..1.71..2.28..2.78..3.23..3.64..4.01
For A019529 we have:
n=0: smallest k is a(0) = 1 since 1.00 > 0
n=1: smallest k is a(1) = 2 since 1.71 > 1
n=2: smallest k is a(2) = 3 since 2.28 > 2
n=3: smallest k is a(3) = 5 since 3.23 > 3
n=4: smallest k is a(4) = 7 since 4.01 > 4
For this sequence we have:
n=1: smallest k is a(1) = 1 since 1.00 >= 1
n=2: smallest k is a(2) = 3 since 2.28 >= 2
n=3: smallest k is a(3) = 5 since 3.23 >= 3
n=4: smallest k is a(4) = 7 since 4.01 >= 4
		

Crossrefs

See A019529 for a different version.

Programs

  • Mathematica
    f[n_] := Block[{k = 0, s = 0}, While[s < n, k++; s = N[s + 1/Sqrt[k], 50]]; k]; Table[f[n], {n, 1, 60}]
  • PARI
    a(n)=if(n<0,0,t=1;z=1;while(zBenoit Cloitre, Sep 23 2012

Formula

Let f(n) = (1/4)*(n^2-2*zeta(1/2)*n) then we have a(n) = f(n) + O(1). More precisely we claim that for n >= 2 we have a(n) = floor(f(n)+c) where c > Max{a(n)-f(n) : n>=1} = a(153) - f(153) = 1.032880076066608813953... and we believe we can take c = 1.033. - Benoit Cloitre, Sep 23 2012

Extensions

Definition and offset modified by N. J. A. Sloane, Sep 01 2009

A136617 a(n) = largest k such that the sum of k consecutive reciprocals 1/n + ... + 1/(n+k-1) does not exceed 1.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115
Offset: 1

Views

Author

Rainer Rosenthal, Jan 13 2008

Keywords

Comments

Heuristic formula from David Cantrell (SeqFan mailing list, January 2008). Think of a ruler with harmonic numbers H(n) as marks. Then A136617(n) gives the number of marks m-n+1 = A136616(n)-n+1:
.............H........H.....H........***.....H.......
..............n-1......n.....n+1..............m......
...........----o-------+------+-----.***.-----+-o----
................\____________..____________/......
...............................\/.....................
............................Length 1..................
The first 23 terms of A083088 are identical to those of A136617 but the limits of A083088(n)/n and A136617(n)/n for n->oo are different.

Examples

			a(3) = 4 because 1/3+1/4+1/5+1/6 < 1 has 4 summands; adding 1/7 exceeds 1.
		

Crossrefs

Programs

  • Maple
    A136617 := proc(n) local t, m; t:= 0; for m from n do t:= t+1/m; if t > 1 then return m-n; fi; od; end proc;[seq(A136617(n),n=1..100)]; # Robert Israel, Jan 2008
  • Mathematica
    Table[Module[{start = Floor[z (E - 1)] - 1},
      NestWhile[# + 1 &, start, HarmonicNumber[# + z] - HarmonicNumber[z] + 1/z <= 1 &]], {z, 1, 100}] (* Peter J. C. Moses, Aug 20 2012 *)

Formula

a(n) = A136616(n-1) - n + 1 with David Cantrell's heuristics: a(n) = floor( (e - 1)*(n - 1/2) + (e - 1/e)/(24*(n - 1/2)) ).

A074633 a(n) is the smallest index m such that Sum_{k=2..m} 1/PrimePi(k) >= n, where PrimePi()=A000720().

Original entry on oeis.org

2, 4, 8, 12, 18, 27, 37, 51, 68, 89, 116, 147, 186, 232, 287, 352, 428, 518, 623, 745, 887, 1050, 1240, 1456, 1704, 1987, 2309, 2674, 3090, 3557, 4087, 4684, 5353, 6105, 6949, 7892, 8944, 10121, 11431, 12885, 14502, 16298, 18286, 20485, 22917, 25607
Offset: 1

Views

Author

Labos Elemer, Aug 28 2002

Keywords

Examples

			a(85) = 927685 because 927686 is the smallest m such that Sum_{k=2..m} 1/PrimePi(k) >= 85.
		

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/PrimePi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 2, 1000000}]

Extensions

Edited by Jon E. Schoenfield, Apr 04 2023
Name corrected by Sean A. Irvine, Jan 22 2025

A076751 a(n) is the smallest composite k such that Sum_{composites j = 4, ..., k} 1/j exceeds n.

Original entry on oeis.org

16, 63, 216, 715, 2279, 7102, 21722, 65558, 195759, 579465, 1703072, 4975222, 14459492, 41837580, 120585504, 346372172, 991915208, 2832896772, 8071045528, 22944211170
Offset: 1

Views

Author

Jack Brennen, Nov 12 2002

Keywords

Comments

These partial sums, like the harmonic sequence (A004080), can never be integers.

Examples

			a(1) = 1 because 1/4 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/14 + 1/15 = 0.97420... < 1 but 1/4 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/14 + 1/15 + 1/16 = 1.03670... > 1.
		

Crossrefs

Programs

  • Mathematica
    NextComposite[n_] := Block[{k = n + 1}, While[ PrimeQ[k], k++ ]; k]; k = 4; s = 0; Do[ While[s = s + 1/k; s < n, k = NextComposite[k]]; Print[k]; k = NextComposite[k], {n, 1, 17}]
  • PARI
    lista(cmax) = {my(n = 1, s = 0); forcomposite(c = 1, cmax, s += 1/c; if(s > n, print1(c, ", "); n++));} \\ Amiram Eldar, Jul 17 2024

Formula

Limit_{n->oo} a(n+1)/a(n) = e.
a(n) = A002808(A074631(n)). - Amiram Eldar, Jul 17 2024

Extensions

Edited and extended by Robert G. Wilson v, Nov 14 2002
Name edited and a(18) added by Jon E. Schoenfield, Feb 01 2020
a(19)-a(20) from Amiram Eldar, Jul 17 2024

A079353 Numbers n such that the best rational approximation to H(n) with denominator <=n is an integer, where H(n) denotes the n-th harmonic number (A001008/A002805).

Original entry on oeis.org

1, 3, 4, 10, 11, 30, 31, 82, 83, 226, 227, 615, 616, 1673, 1674, 4549, 4550, 12366, 12367, 33616, 33617
Offset: 1

Views

Author

Benoit Cloitre, Feb 14 2003

Keywords

Comments

From Robert Israel, May 19 2014: The definition is unclear. For example, how does 10 fit in? H(10) = 7381/2520, and the best approximation with denominator <= 10 is 29/10, which is not an integer. Similarly, I don't see how 31, 82, 227, 616, or 1674 fit the definition, as according to my computations the best approximations in these cases are 125/31, 409/82, 1363/227, 4313/616, 13393/1674.
Response from David Applegate, May 20 2014: I suspect, without deep investigation, that what was meant by "best rational approximation to" is "continued fraction convergent". The continued fraction convergents to H(10)=7381/2520 are 2, 3, 41/14, 495/169, ... The continued fraction convergents to H(31) are 4, 145/36, 149/37, 443/110, ... The continued fraction convergents to H(82) are 4, 5, 499/100, 2001/401, ... I haven't verified that the rest of the terms match this definition.
Response from Ray Chandler, May 20 2014: I confirm that definition matches the listed terms and continues with 4549, 4550 and no others less than 10000.
Added by Ray Chandler, May 29 2014: Except for the beginning terms A079353 appears to be the union of A115515 and A002387 (compare A242654).

Examples

			H(11)=83711/27720 and the best approximation to H(11) among the fractions of form k/11, k>=0, is 33/11=3, an integer. Hence 11 is in the sequence.
		

Crossrefs

See A242654 for the most likely continuation.

Programs

  • Mathematica
    okQ[n_] := Select[Convergents[N[HarmonicNumber[n], 30], 10], Denominator[#] <= n &][[-1]] // IntegerQ;
    Reap[For[n = 1, n <= 40000, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] // Quiet (* Jean-François Alcover, Apr 10 2019 *)

Extensions

a(16)-a(17) from Ray Chandler, May 20 2014
Edited by N. J. A. Sloane, May 29 2014
a(18)-a(21) from Jean-François Alcover, Apr 10 2019

A065071 Minimum number of identical bricks of length 1 which, when stacked without mortar in the naive way, form a stack of length >=n.

Original entry on oeis.org

1, 5, 32, 228, 1675, 12368, 91381, 675215, 4989192, 36865413, 272400601, 2012783316, 14872568832, 109894245430, 812014744423, 6000022499694, 44334502845081, 327590128640501, 2420581837980562, 17885814992891027
Offset: 1

Views

Author

John W. Layman, Nov 08 2001

Keywords

Comments

Note that one can do "better" in terms of projections if one groups the bricks asymmetrically into lozenges with holes. See the Ainsley and Drummond references. Ainsley considers only the case of four bricks, but achieves an overhang of (15 - 4*sqrt(2))/8, compared with 25/24 for the harmonic pile. - D. G. Rogers, Aug 31 2005
Lim_{n -> inf} a(n)/a(n-1) = exp(2). - Robert G. Wilson v, Jan 26 2017

Examples

			Obviously a(1)=1. If the center of gravity of one brick is placed at the end of a second brick, the length of the stack of 2 bricks is 1.5. If the c.g. of that stack is placed at the end of a third brick, the length of the stack is 1.75. Continuing, we get a stack of length 1.916666... for 4 bricks and a stack of length 2.0416666... for 5 bricks. Thus a(2)=5.
		

References

  • N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.

Crossrefs

Cf. harmonic numbers H(n) = A001008/A002805, A002387, A004080.

Programs

Formula

a(n) = A002387(2n) + 1 = A014537(n) + 1.

Extensions

More terms from Vladeta Jovovic, Nov 14 2001

A306349 Number of terms in the greedy Egyptian fraction representation of n.

Original entry on oeis.org

1, 4, 13, 35, 99
Offset: 1

Views

Author

Pontus von Brömssen, Feb 09 2019

Keywords

Comments

a(n) >= A004080(n).
a(6) > 255 and the denominator of the 255th term in the representation of 6 has 1264021241 digits.

Examples

			a(3)=13 is the number of terms of A140335;
a(4)=35 is the number of terms of A281873.
		

Crossrefs

Programs

  • Python
    from sympy import egyptian_fraction
    def A306349(n): return len(egyptian_fraction((n,1)))

A331028 Partition the terms of the harmonic series into groups sequentially so that the sum of each group is equal to or minimally greater than 1; then a(n) is the number of terms in the n-th group.

Original entry on oeis.org

1, 3, 8, 22, 60, 163, 443, 1204, 3273, 8897, 24184, 65739, 178698, 485751, 1320408, 3589241, 9756569, 26521104, 72091835, 195965925, 532690613, 1448003214, 3936080824, 10699376979, 29083922018, 79058296722, 214902731368, 584166189564, 1587928337892, 4316436745787
Offset: 1

Views

Author

Keywords

Comments

a(n) is equal to A024581(n) through a(10), and grows very similarly for n > 10.
Let b(n) = Sum_{j=1..n} a(n); then for n >= 2 it appears that b(n) = round((b(n-1) + 1/2)*e). Cf. A331030. - Jon E. Schoenfield, Jan 14 2020

Examples

			a(1)=1 because 1 >= 1,
a(2)=3 because 1/2 + 1/3 + 1/4 = 1.0833... >= 1, etc.
		

Crossrefs

Some sequences in the same spirit as this: A002387, A004080, A055980, A115515.

Programs

  • PARI
    default(realprecision, 10^5); e=exp(1);
    lista(nn) = {my(r=1); print1(r); for(n=2, nn, print1(", ", -r+(r=floor(e*r+(e+1)/2+(e-1/e)/(24*(r+1/2)))))); } \\ Jinyuan Wang, Mar 31 2020
  • Python
    x = 0.0
    y = 0.0
    for i in range(1,100000000000000000000000):
      y += 1
      x = x + 1/i
      if x >= 1:
        print(y)
        y = 0
        x = 0
    

Formula

a(n) = min(p): Sum_{b=r+1..p+r} 1/b >= 1, r = Sum_{k=1..n-1} a(k), a(1) = 1.

Extensions

a(20)-a(21) from Giovanni Resta, Jan 14 2020
More terms from Jinyuan Wang, Mar 31 2020

A074467 Least k such that Sum_{i=1..k} 1/phi(i) >= n.

Original entry on oeis.org

1, 2, 4, 8, 13, 22, 38, 63, 105, 177, 296, 495, 828, 1386, 2318, 3879, 6489, 10854, 18158, 30375, 50811, 84998, 142187, 237853, 397885, 665589, 1113411, 1862534, 3115683, 5211973, 8718687, 14584783, 24397699, 40812930, 68272636, 114207749, 191048868, 319590137
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 177, p. 55, Ellipses, Paris 2008.
  • E. Landau, Uber die Zahlentheoretische Function ϕ(n) und ihre Beziehung zum Goldbachschen satz, Nachrichten der Koniglichten Gesel lschaft der Wissenschaften zu Göttingen mathematisch Physikalische klasse, Jahrgang (1900), pp. 177-186.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/EulerPhi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(s,k);while(sCharles R Greathouse IV, Jan 29 2013

Formula

a(n) ~ k exp(cn) for c = zeta(6)/zeta(2)/zeta(3) = A068468 and k = exp(-gamma + A085609) = 1.0316567993311528...; see Montgomery or Koninck. - Charles R Greathouse IV, Jan 29 2013

Extensions

More terms from Ryan Propper, Jul 09 2005
a(32)-a(38) from Donovan Johnson, Aug 21 2011

A074468 Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.

Original entry on oeis.org

1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Formula

Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024

Extensions

2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024
Previous Showing 11-20 of 31 results. Next