A002250
a(n) = 4^n - 2*3^n.
Original entry on oeis.org
-1, -2, -2, 10, 94, 538, 2638, 12010, 52414, 222778, 930478, 3840010, 15714334, 63920218, 258869518, 1045044010, 4208873854, 16921588858, 67944635758, 272553384010, 1092538058974, 4377125804698, 17529423925198, 70180457820010, 280910117637694, 1124205329623738, 4498515895713838
Offset: 0
-
[4^n-2*3^n: n in [0..30]]; // Vincenzo Librandi, Jun 20 2013
-
Table[4^n - 2 3^n, {n, 0, 30}] (* or *) CoefficientList[Series[-(1 - 5 x) / ((1 - 3 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 20 2013 *)
-
a(n)=4^n-2*3^n \\ Charles R Greathouse IV, Jun 23 2020
A129736
Primes of the form 4^k - 3^k.
Original entry on oeis.org
7, 37, 14197, 17050729021, 332306984815842876487217260305275077
Offset: 1
- Muniru A Asiru, Table of n, a(n) for n = 1..13
- Bogley, William A.; Williams, Gerald Efficient finite groups arising in the study of relative asphericity. Math. Z. 284, No. 1-2, 507-535 (2016).
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
-
Filtered(List([1..100], n -> 4^n-3^n), IsPrime); # Muniru A Asiru, Feb 09 2018
-
[a: n in [0..300] | IsPrime(a) where a is 4^n-3^n]; // Vincenzo Librandi, Nov 23 2010
-
select(isprime, [seq(4^n - 3^n, n=0..100)]); # Muniru A Asiru, Feb 09 2018
-
fQ[n_] := If[PrimeQ[4^n - 3^n], 4^n - 3^n, Nothing]; Array[fQ, 300] (* Robert G. Wilson v, Feb 12 2018 *)
-
lista(nn) = for(k=1, nn, if(isprime(p=4^k-3^k), print1(p", "))) \\ Altug Alkan, Mar 03 2018
A167784
a(n) = 2^n - (1 - (-1)^n)*3^((n-1)/2).
Original entry on oeis.org
1, 0, 4, 2, 16, 14, 64, 74, 256, 350, 1024, 1562, 4096, 6734, 16384, 28394, 65536, 117950, 262144, 484922, 1048576, 1979054, 4194304, 8034314, 16777216, 32491550, 67108864, 131029082, 268435456, 527304974, 1073741824, 2118785834, 4294967296, 8503841150
Offset: 0
-
seq(2^n - (1 - (-1)^n)*3^((n-1)/2), n=0..100); # Robert Israel, Apr 11 2019
-
LinearRecurrence[{2, 3, -6}, {1, 0, 4}, 40] (* Harvey P. Dale, Nov 29 2011 *)
A248337
a(n) = 6^n - 4^n.
Original entry on oeis.org
0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
Offset: 0
Cf. sequences of the form k^n - 4^n: -
A000302 (k=0), -
A024036 (k=1), -
A020522 (k=2), -
A005061 (k=3),
A005060 (k=5), this sequence (k=6),
A190542 (k=7),
A059409 (k=8),
A118004 (k=9),
A248338 (k=10),
A139742 (k=11), 8*
A016159 (k=12).
-
[6^n-4^n: n in [0..30]];
-
Table[6^n - 4^n, {n,0,30}]
CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x]
LinearRecurrence[{10,-24},{0,2},30] (* Harvey P. Dale, Aug 18 2024 *)
-
vector(20,n,6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
-
A248337=BinaryRecurrenceSequence(10,-24,0,2)
[A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
A269576
a(n) = Product_{i=1..n} (4^i - 3^i).
Original entry on oeis.org
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269661 (j=5, k=4).
-
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
A269731
Dimensions of the 3-polytridendriform operad TDendr_3.
Original entry on oeis.org
1, 7, 61, 595, 6217, 68047, 770149, 8939707, 105843409, 1273241431, 15517824973, 191202877411, 2377843390873, 29807864423071, 376255282112629, 4778240359795147, 61007205215610529, 782648075371992487, 10083436451634033757, 130413832663780730995, 1692599303723819234281, 22037570163808433691247, 287762084009227350367621
Offset: 1
-
I:=[1,7]; [n le 2 select I[n] else (7*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
-
Rest[CoefficientList[Series[(1 - 7*x - Sqrt[1 - 14*x + x^2])/(24*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
Table[-I*LegendreP[n, -1, 2, 7]/(2*Sqrt[3]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 7, (n + 1) a[n] == 7 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
-
A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
my(q=3); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
-
my(q=3, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
A327316
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = ((x+r)^n - (x+s)^n)/(r - s), where r = 3 and s = 2.
Original entry on oeis.org
1, 5, 2, 19, 15, 3, 65, 76, 30, 4, 211, 325, 190, 50, 5, 665, 1266, 975, 380, 75, 6, 2059, 4655, 4431, 2275, 665, 105, 7, 6305, 16472, 18620, 11816, 4550, 1064, 140, 8, 19171, 56745, 74124, 55860, 26586, 8190, 1596, 180, 9, 58025, 191710, 283725, 247080
Offset: 1
First seven rows:
1
5 2
19 15 3
65 76 30 4
211 325 190 50 5
665 1266 975 380 75 6
2059 4655 4431 2275 665 105 7
-
f[x_, n_] := ((x + r)^n - (x + s)^n)/(r - s);
r = 3; s = 2;
Column[Table[Expand[f[x, n]], {n, 1, 5}]]
c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
TableForm[Table[c[x, n], {n, 1, 10}]] (* A327316 array *)
Flatten[Table[c[x, n], {n, 1, 12}]] (* A327316 sequence *)
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A380024
a(n) = 4^n - 3^n - binomial(n,2)*3^(n-2).
Original entry on oeis.org
0, 1, 6, 28, 121, 511, 2152, 9094, 38563, 163729, 694282, 2934592, 12348541, 51697075, 215291356, 891989002, 3677964295, 15099277669, 61745907934, 251632677604, 1022414950465, 4143511249831, 16755357788176, 67628131638478, 272531374722091
Offset: 0
For n=2, the 6 words on {0, 1, 2, 3} that use 0 at least once but not twice are 10, 01, 20, 02, 30, 03.
-
Array[4^#-3^#-Binomial[#,2]*3^(#-2)&,25,0] (* or *) LinearRecurrence[{13,-63,135,-108},{0,1,6,28},25] (* James C. McMahon, Feb 14 2025 *)
-
def A380024(n): return (1<<(n<<1))-((n*(n-1)>>1)+9)*3**(n-2) if n>1 else n # Chai Wah Wu, Feb 14 2025
A228213
Number of second differences of arrays of length n + 2 of numbers in 0..3.
Original entry on oeis.org
13, 103, 625, 3151, 14053, 58975, 242461, 989527, 4017157, 16245775, 65514541, 263652487, 1059392917, 4251920575, 17050729021, 68332056247, 273715645477, 1096024843375, 4387586157901, 17560804984807, 70274600998837
Offset: 1
Some solutions for n=4:
..5....0...-5....3....4....1....3...-3...-6....2....2....1...-5....1....0....2
.-4....2....2...-3...-5....1....1....3....3...-1....3....1....3....4....3....1
..2....0...-1....5....5...-3...-5....1....1....4...-5....1....0...-6...-3...-1
..3...-2....2...-6...-2....0....3...-5....1...-5....4...-1...-3....6....3....0
Comments