cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 126 results. Next

A063908 Numbers k such that k and 2*k-3 are primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 53, 67, 71, 83, 97, 101, 107, 113, 127, 137, 157, 167, 181, 191, 193, 211, 223, 233, 241, 251, 263, 283, 311, 317, 331, 347, 373, 421, 431, 433, 443, 457, 461, 487, 521, 547, 563, 577, 587, 613, 617, 631, 641, 643, 647
Offset: 1

Views

Author

N. J. A. Sloane, Aug 31 2001

Keywords

Comments

If p is in this sequence then the products of positive powers of 3, p and 2p-3 are entries in A086486. - Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Median prime of AP3's starting at 3, i.e., triples of primes (3,p,q) in arithmetic progression. - M. F. Hasler, Sep 24 2009
a(n) = sum of the coprimes(p) mod (p+1). - J. M. Bergot, Nov 13 2014
A010051(2*a(n)-3) = 1. - Reinhard Zumkeller, Jul 02 2015
A098090 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

Examples

			From _K. D. Bajpai_, Nov 29 2019: (Start)
a(5) = 13 is prime and 2*13 - 3 = 23 is also prime.
a(6) = 17 is prime and 2*17 - 3 = 31 is also prime.
(End)
		

Crossrefs

Programs

  • Haskell
    a063908 n = a063908_list !! (n-1)
    a063908_list = filter
       ((== 1) . a010051' . (subtract 3) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [n : n in [0..700] | IsPrime(n) and IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 14 2014
    
  • Maple
    select(k -> andmap(isprime, [k, 2*k-3]), [seq(k, k=1.. 10^4)]); # K. D. Bajpai, Nov 29 2019
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#-3]&] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
  • PARI
    { n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 3), write("b063908.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    forprime( p=1,default(primelimit), isprime(2*p-3) && print1(p",")) \\ M. F. Hasler, Sep 24 2009
    

Formula

a(n) = A241817(n)/2. - Wesley Ivan Hurt, Apr 08 2018

A129521 Numbers of the form p*q, p and q prime with q=2*p-1.

Original entry on oeis.org

6, 15, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

All terms are Fermat 4-pseudoprimes, i.e., satisfy 4^n == 4 (mod n). See A020136 and A122781.

Crossrefs

Subsequence of A006881, A129510, and A122781.
Intersection of A000384 and A001358, "hexagonal semiprimes". - Wesley Ivan Hurt, Jul 04 2013

Programs

  • Haskell
    a129521 n = p * (2 * p - 1) where p = a005382 n
    -- Reinhard Zumkeller, Nov 10 2013
  • Magma
    [2*n^2-n: n in [0..1000]|IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    p = Select[Prime[Range[155]], PrimeQ[2# - 1] &]; p (2p - 1) (* Robert G. Wilson v, Sep 11 2011 *)
  • PARI
    forprime(p=2,10000,q=2*p-1;if(isprime(q),print1(p*q,", ")))
    

Formula

a(n) = A005382(n)*A005383(n).

A057330 First member of a prime n-tuplet in a 2p-1 progression.

Original entry on oeis.org

2, 2, 2, 1531, 1531, 16651, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 69257563144280941, 69257563144280941, 3203000719597029781
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Comments

Initial terms of A000040, A005382, A057326, A057327, A057328, A057329.

Crossrefs

See also A005603. Cf. A179866.

Extensions

More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006
Offset corrected by Max Alekseyev, May 07 2009
a(16) found by Tony Forbes, added by Jens Kruse Andersen, Jun 14 2014

A005603 Smallest prime beginning a complete Cunningham chain (of the second kind) of length n.

Original entry on oeis.org

11, 7, 2, 2131, 1531, 385591, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 107588900851484911, 69257563144280941, 3203000719597029781
Offset: 1

Views

Author

Keywords

Comments

The chain begins with a prime number p; next term p' (a prime) is produced forming 2p-1; next term p"=2p'-1, etc. "Complete" means that each chain is exactly n primes long (i.e. the chain cannot be a subchain of another one). That is why this sequence is slightly different from A064812, where the 6th term (33301) is smaller than here (385591) but is the second one of a seven primes sequence and therefore doesn't *start* a sequence.
According to Augustin's web site, the numbers 107588900851484911, 69257563144280941, 3203000719597029781 are also in the sequence. - Dmitry Kamenetsky, May 14 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A064812 for another version.

Extensions

6th term corrected from 385591 on Feb 23 1995, at Robert G. Wilson v's suggestion
a(14) and a(15) found by Paul Jobling (Paul.Jobling(AT)WhiteCross.com) [Oct 23 2000]
a(6) reverted to original value by Sean A. Irvine, Jul 10 2016
a(16) from Augustin's page, comment corrected by Jens Kruse Andersen, Jun 14 2014
Edited by N. J. A. Sloane, Nov 03 2018 at the suggestion of Georg Fischer, Nov 03 2018, merging a duplicate entry with this one.
In Augustin's web page there are 7 or so more terms which could be added here, or alternatively used to create a b-file. - Georg Fischer, Nov 03 2018

A068443 Triangular numbers which are the product of two primes.

Original entry on oeis.org

6, 10, 15, 21, 55, 91, 253, 703, 1081, 1711, 1891, 2701, 3403, 5671, 12403, 13861, 15931, 18721, 25651, 34453, 38503, 49141, 60031, 64261, 73153, 79003, 88831, 104653, 108811, 114481, 126253, 146611, 158203, 171991, 188191, 218791, 226801, 258121, 269011
Offset: 1

Views

Author

Stephan Wagler (stephanwagler(AT)aol.com), Mar 09 2002

Keywords

Comments

These triangular numbers are equal to p * (2p +- 1).
All terms belong to A006987. For n>2 all terms are odd and belong to A095147. - Alexander Adamchuk, Oct 31 2006
A156592 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Triangular numbers with exactly 4 divisors. - Jon E. Schoenfield, Sep 05 2018

Examples

			Triangular numbers begin 0, 1, 3, 6, 10, ...; 6=2*3, and 2 and 3 are two distinct primes; 10=2*5, and 2 and 5 are two distinct primes, etc. - _Vladimir Joseph Stephan Orlovsky_, Feb 27 2009
a(11) = 1891 and 1891 = 31 * 61.
		

Crossrefs

Programs

  • Maple
    q:= n-> is(numtheory[bigomega](n)=2):
    select(q, [i*(i+1)/2$i=0..1000])[];  # Alois P. Heinz, Mar 27 2024
  • Mathematica
    Select[ Table[ n(n + 1)/2, {n, 1000}], Apply[Plus, Transpose[ FactorInteger[ # ]] [[2]]] == 2 &]
    Select[Accumulate[Range[1000]],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 03 2016 *)
  • PARI
    list(lim)=my(v=List());forprime(p=2,(sqrtint(lim\1*8+1)+1)\4, if(isprime(2*p-1),listput(v,2*p^2-p)); if(isprime(2*p+1), listput(v,2*p^2+p))); Vec(v) \\ Charles R Greathouse IV, Jun 13 2013

Formula

A010054(a(n))*A064911(a(n)) = 1. - Reinhard Zumkeller, Dec 03 2009
a(n) = A000217(A164977(n)). - Zak Seidov, Feb 16 2015

Extensions

Edited by Robert G. Wilson v, Jul 08 2002
Definition corrected by Zak Seidov, Mar 09 2008

A005936 Pseudoprimes to base 5.

Original entry on oeis.org

4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 15841, 16297, 17767, 21361, 22791, 23653, 24211, 25327, 25351, 29341, 29539
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, 4 should be excluded, following the strict definition in Crandall and Pomerance. - May 16 2006
Theorem: If both numbers q and (2q - 1) are primes (q is in the sequence A005382) then n = q*(2q - 1) is a pseudoprime to base 5 (n is in the sequence) if and only if q is of the form 10k + 1. 1891, 88831, 146611, 218791, 721801, ... are such terms. This sequence is a subsequence of A122782. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 5^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 124, p. 43, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005935 (3), A005937 (6), A005938 (7), A005939 (10).

Programs

  • Mathematica
    base = 5; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
    Select[Range[30000],CompositeQ[#]&&PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

More terms from David W. Wilson, Aug 15 1996

A005938 Pseudoprimes to base 7.

Original entry on oeis.org

6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, 10225, 10585, 10621, 11041, 11521, 12025, 13665, 14089, 16725, 16806, 18721, 19345, 20197, 20417, 20425, 22945, 25829, 26419, 29234, 29341, 29857, 29891, 30025, 30811, 33227
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, May 16 2006, 6 should be excluded, following the strict definition in Crandall and Pomerance.
Theorem: If both numbers q & 2q-1 are primes(q is in the sequence A005382) and n=q*(2q-1) then 7^(n-1)==1 (mod 7)(n is in the sequence) iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6,703,18721,38503,88831,104653,146611,188191,... are such terms. This sequence is a subsequence of A122784. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 7^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005935 (3), A005936 (5), A005937 (6), A005939 (10).

Programs

  • Mathematica
    Select[Range[31000], ! PrimeQ[ # ] && PowerMod[7, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 14 2006 *)
  • Python
    from sympy import isprime
    def ok(n): return pow(7, n-1, n) == 1 and not isprime(n)
    print(list(filter(ok, range(1, 34000)))) # Michael S. Branicky, Jun 25 2021

A020136 Fermat pseudoprimes to base 4.

Original entry on oeis.org

15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131
Offset: 1

Views

Author

Keywords

Comments

If q and 2q-1 are odd primes, then n=q*(2q-1) is in the sequence. So for n>1, A005382(n)*(2*A005382(n)-1) form a subsequence (cf. A129521). - Farideh Firoozbakht, Sep 12 2006
Primes q and 2q-1 are a Cunningham chain of the second kind. - Walter Nissen, Sep 07 2009
Composite numbers n such that 4^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012

Crossrefs

Subsequence of A122781.
Contains A001567 (Fermat pseudoprimes to base 2) as a subsequence.

Programs

  • Mathematica
    Select[Range[9200], ! PrimeQ[ # ] && PowerMod[4, # - 1, # ] == 1 &] (* Farideh Firoozbakht, Sep 12 2006 *)
  • PARI
    isok(n) = (Mod(4, n)^(n-1)==1) && !isprime(n) && (n>1); \\ Michel Marcus, Apr 27 2018

A023509 Greatest prime divisor of prime(n) + 1.

Original entry on oeis.org

3, 2, 3, 2, 3, 7, 3, 5, 3, 5, 2, 19, 7, 11, 3, 3, 5, 31, 17, 3, 37, 5, 7, 5, 7, 17, 13, 3, 11, 19, 2, 11, 23, 7, 5, 19, 79, 41, 7, 29, 5, 13, 3, 97, 11, 5, 53, 7, 19, 23, 13, 5, 11, 7, 43, 11, 5, 17, 139, 47, 71, 7, 11, 13, 157, 53, 83, 13, 29, 7, 59, 5, 23, 17, 19, 3, 13
Offset: 1

Views

Author

Keywords

Comments

A005382 is the records subsequence of this sequence. - David James Sycamore, May 05 2025

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Prime[n] + 1][[-1, 1]], {n, 100}]
  • PARI
    A023509(n) = {local(f);f=factor(prime(n)+1);f[matsize(f)[1],1]} \\ Michael B. Porter, Feb 02 2010

Formula

a(n) = A006530(A008864(n)). - R. J. Mathar, Feb 06 2019

A057328 First member of a prime 5-tuple in a 2p-1 progression.

Original entry on oeis.org

1531, 6841, 15391, 16651, 33301, 44371, 57991, 66601, 83431, 105871, 145021, 150151, 165901, 199621, 209431, 212851, 231241, 242551, 291271, 319681, 331801, 346141, 377491, 381631, 385591, 445741, 451411, 478801, 481021, 506791, 507781
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Comments

Numbers n such that n remains prime through 4 iterations of function f(x) = 2x - 1.

Examples

			Quintuplets are (1531, 3061, 6121, 12241, 24481), (6841, 13681, 27361, 54721, 109441), ...
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(6*10^5) | forall{q: k in [1..4] | IsPrime(q) where q is 2^k*(p-1)+1} ];  // Bruno Berselli, Nov 23 2011
  • Mathematica
    pQ[n_] := And @@ PrimeQ[NestList[2 # - 1 &, n, 4]]; t = {}; Do[p = Prime[n]; If[pQ[p], AppendTo[t, p]], {n, 42500}]; t (* Jayanta Basu, Jun 17 2013 *)
    Select[Prime[Range[50000]],AllTrue[Rest[NestList[2#-1&,#,4]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2019 *)
Previous Showing 11-20 of 126 results. Next