cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 86 results. Next

A283424 Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, May 14 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
      1;
      2,     1;
      5,     3,    1;
     15,    10,    4,    1;
     52,    37,   17,    5,    1;
    203,   151,   76,   26,    6,   1;
    877,   674,  362,  137,   37,   7,  1;
   4140,  3263, 1842,  750,  225,  50,  8, 1;
  21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000110(n+1), A138378 or A005493(n-1), A124325, A288785, A288786, A288787, A288788, A288789, A288790, A288791, A288792.
Row sums give A124427(n+1).
T(2n,n) gives A286896.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k>n, 0,
          binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)

Formula

T(n,k) = Sum_{j=0..n-k} binomial(n,j) * Bell(j).
T(n,k) = Bell(n+1) - Sum_{j=0..k-1} binomial(n,j) * Bell(n-j).
T(n,k) = Sum_{j=k..n} A056857(n+1,j) = Sum_{j=k..n} A056860(n+1,n+1-j).
Sum_{k=0..n} T(n,k) = n*Bell(n)+Bell(n+1) = A124427(n+1).
Sum_{k=1..n} T(n,k) = n*Bell(n) = A070071(n).
T(n,0)-T(n,1) = Bell(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A224271(n+1). - Alois P. Heinz, May 17 2023

A045379 Expansion of e.g.f.: exp(4*z + exp(z) - 1).

Original entry on oeis.org

1, 5, 26, 141, 799, 4736, 29371, 190497, 1291020, 9131275, 67310847, 516369838, 4116416797, 34051164985, 291871399682, 2588914083065, 23733360653955, 224592570163192, 2191466128865567, 22024934452712437, 227771488390279260
Offset: 0

Views

Author

Keywords

Crossrefs

Equals the row sums of triangle A143496. - Wolfdieter Lang, Sep 29 2011

Programs

  • Magma
    A045379:= func< n | (&+[Binomial(n,j)*4^(n-j)*Bell(j): j in [0..n]]) >;
    [A045379(n): n in [0..30]]; // G. C. Greubel, Dec 01 2022
    
  • Mathematica
    a[0]= 1; a[n_]:= a[n]= 4*a[n-1] +Sum[Binomial[n-1, k]*a[k], {k,0,n-1}]; Array[a, 21, 0] (* Amiram Eldar, Jul 03 2020 *)
  • SageMath
    def A045379(n): return sum( 4^(n-j)*bell_number(j)*binomial(n,j) for j in range(n+1))
    [A045379(n) for n in range(31)] # G. C. Greubel, Dec 01 2022

Formula

a(n) = exp(-1)*Sum_{k>=0} ((k+4)^n)/k!. - Gerald McGarvey, Jun 03 2004
A recursive formula to compute some integer sequences (including A000110, A005493, A005494 and the present sequence). Define G(n, m), where n, m >= 0, as follows: G(0, m) = 1; G(n, m) = G(n-1, m) * (m+1) + G(n-1, m+1), where n > 0. Then G(n, 0) = A000110(n+1); G(n, 1) = A005493(n+1); G(n, 2) = A005494(n+1); G(n, 3) = A045379(n+1). - Alexey Andreev (ava12(AT)nm.ru), Jan 05 2006
Define f_1(x), f_2(x), ... such that f_1(x)=x^3*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)*charpoly(A,-4). - Milan Janjic, Jul 08 2010
G.f.: 1/U(0) where U(k) = 1 - x*(k+5) - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 4) / LambertW(n)^(n + 9/2). - Vaclav Kotesovec, Jun 10 2020
a(0) = 1; a(n) = 4 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) = Sum_{j=0..n} binomial(n, j)*4^(n-j)*A000110(j). - G. C. Greubel, Dec 01 2022

A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2016

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(3,2) = 3: 12|3, 1|23, 1|2|3.
A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  2,   2,   2,    2,    2,    2,    2, ...
  0, 1,  3,   5,   5,    5,    5,    5,    5, ...
  0, 1,  5,  10,  15,   15,   15,   15,   15, ...
  0, 1,  8,  20,  37,   52,   52,   52,   52, ...
  0, 1, 13,  42,  87,  151,  203,  203,  203, ...
  0, 1, 21,  87, 208,  409,  674,  877,  877, ...
  0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
		

Crossrefs

Main diagonal gives A000110.
A(n+1,n) gives A005493(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A276727(n,i).

A108087 Array, read by antidiagonals, where A(n,k) = exp(-1)*Sum_{i>=0} (i+k)^n/i!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 4, 1, 52, 52, 37, 17, 5, 1, 203, 203, 151, 77, 26, 6, 1, 877, 877, 674, 372, 141, 37, 7, 1, 4140, 4140, 3263, 1915, 799, 235, 50, 8, 1, 21147, 21147, 17007, 10481, 4736, 1540, 365, 65, 9, 1, 115975, 115975, 94828, 60814, 29371, 10427, 2727, 537, 82, 10, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

The column for k=0 is A000110 (Bell or exponential numbers). The column for k=1 is A000110 starting at offset 1. The column for k=2 is A005493 (Sum_{k=0..n} k*Stirling2(n,k).). The column for k=3 is A005494 (E.g.f.: exp(3*z+exp(z)-1).). The column for k=4 is A045379 (E.g.f.: exp(4*z+exp(z)-1).). The row for n=0 is 1's sequence, the row for n=1 is the natural numbers. The row for n=2 is A002522 (n^2 + 1.). The row for n=3 is A005491 (n^3 + 3n + 1.). The row for n=4 is A005492.
Number of ways of placing n labeled balls into n+k boxes, where k of the boxes are labeled and the rest are indistinguishable. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
The column for k = -1 (not shown) is A000296 (Number of partitions of an n-set into blocks of size >1. Also number of cyclically spaced (or feasible) partitions.). - Gerald McGarvey, Oct 08 2006
Equals antidiagonals of an array in which (n+1)-th column is the binomial transform of n-th column, with leftmost column = the Bell sequence, A000110. - Gary W. Adamson, Apr 16 2009
Number of partitions of [n+k] where at least k blocks contain their own index element. A(2,2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022

Examples

			Array A(n,k) begins:
   1,   1,   1,    1,    1,     1,     1,     1,     1,      1, ... A000012;
   1,   2,   3,    4,    5,     6,     7,     8,     9,     10, ... A000027;
   2,   5,  10,   17,   26,    37,    50,    65,    82,    101, ... A002522;
   5,  15,  37,   77,  141,   235,   365,   537,   757,   1031, ... A005491;
  15,  52, 151,  372,  799,  1540,  2727,  4516,  7087,  10644, ... A005492;
  52, 203, 674, 1915, 4736, 10427, 20878, 38699, 67340, 111211, ... ;
Antidiagonal triangle, T(n, k), begins as:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    3,    1;
    15,   15,   10,    4,   1;
    52,   52,   37,   17,   5,   1;
   203,  203,  151,   77,  26,   6,  1;
   877,  877,  674,  372, 141,  37,  7,  1;
  4140, 4140, 3263, 1915, 799, 235, 50,  8,  1;
		

References

  • F. Ruskey, Combinatorial Generation, preprint, 2001.

Crossrefs

Main diagonal gives A134980.
Antidiagonal sums give A347420.

Programs

  • Magma
    A108087:= func< n,k | (&+[Binomial(n-k,j)*k^j*Bell(n-k-j): j in [0..n-k]]) >;
    [A108087(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 02 2022
    
  • Maple
    with(combinat):
    A:= (n, k)-> add(binomial(n, i) * k^i * bell(n-i), i=0..n):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := Sum[Binomial[n, i] * k^i * BellB[n - i], {i, 0, n}]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    f(n,k)=round (suminf(i=0,(i+k)^n/i!)/exp(1));
    g(n,k)=for(k=0,k,print1(f(n,k),",")) \\ prints k+1 terms of n-th row
    
  • SageMath
    def A108087(n,k): return sum( k^j*bell_number(n-k-j)*binomial(n-k,j) for j in range(n-k+1))
    flatten([[A108087(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

For n> 1, A(n, k) = k^n + sum_{i=0..n-2} A086659(n, i)*k^i. (A086659 is set partitions of n containing k-1 blocks of length 1, with e.g.f: exp(x*y)*(exp(exp(x)-1-x)-1).)
A(n, k) = k * A(n-1, k) + A(n-1, k+1), A(0, k) = 1. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
A(n,k) = Sum_{i=0..n} C(n,i) * k^i * Bell(n-i). - Alois P. Heinz, Jul 18 2012
Sum_{k=0..n-1} A(n-k,k) = A005490(n). - Alois P. Heinz, Jan 05 2022
From G. C. Greubel, Dec 02 2022: (Start)
T(n, n) = A000012(n).
T(n, n-1) = A000027(n).
T(n, n-2) = A002522(n-1).
T(n, n-3) = A005491(n-2).
T(n, n-4) = A005492(n+1).
T(2*n, n) = A134980(n).
T(2*n, n+1) = A124824(n), n >= 1.
Sum_{k=0..n} T(n, k) = A347420(n). (End)

A087650 a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).

Original entry on oeis.org

1, 0, 2, 3, 12, 40, 163, 714, 3426, 17721, 98254, 580316, 3633281, 24011156, 166888166, 1216070379, 9264071768, 73600798036, 608476008123, 5224266196934, 46499892038438, 428369924118313, 4078345814329010, 40073660040755336
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Comments

a(n) is the number of set partitions of [n] that contain exactly one singleton block and all other blocks contain an entry > this singleton. For example, a(3)=3 counts 124/3, 134/2, 1/234 but not 123/4. - David Callan, Aug 27 2014
Partial sums are A173109. - Vladimir Reshetnikov, Oct 29 2015

Examples

			G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
    Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
  • Maxima
    makelist(sum((-1)^(n-k)*belln(k),k,0,n),n,0,40); /* Emanuele Munarini, Sep 27 2012 */
    
  • PARI
    vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ Altug Alkan, Oct 30 2015
  • Sage
    def A087650_list(len): # After the formula of David Callan.
        if len == 1: return [1]
        if len == 2: return [1,0]
        R = []; A = [1]; p = -1
        for i in (0..len-1):
            A.append(A[0] - A[i])
            A[i] = A[0]
            for k in range(i, 0, -1):
                A[k-1] += A[k]
            p = -p
            R.append(A[i+1] + p)
        return R
    A087650_list(24) # Peter Luschny, Aug 28 2014
    

Formula

E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).
a(n) = (-1)^n + Bell(n) - A000296(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
a(n) = A000296(n+1) + (-1)^n. - David Callan, Aug 27 2014
G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - Ilya Gutkovskiy, Mar 04 2021

A095149 Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

Or, prefix Aitken's array (A011971) with a leading diagonal of 0's and take the differences of each row to get the new triangle.
With offset 1, triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} in which k is the largest entry in the block containing 1 (1 <= k <= n). - Emeric Deutsch, Oct 29 2006
Row term sums = the Bell numbers starting with A000110(1): 1, 2, 5, 15, ...
The k-th term in the n-th row is the number of permutations of length n starting with k and avoiding the dashed pattern 23-1. Equivalently, the number of permutations of length n ending with k and avoiding 1-32. - Andrew Baxter, Jun 13 2011
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: Also the number of divisors d with distinct prime multiplicities of the superprimorial A006939(n) that are of the form d = m * 2^k where m is odd. For example, row n = 4 counts the following divisors:
1 2 4 8 16
3 18 12 24 48
5 50 20 40 80
7 54 28 56 112
9 1350 108 72 144
25 540 200 400
27 756 360 432
45 504 720
63 600 1008
75 1400 1200
135 2160
175 2800
189 3024
675 10800
4725 75600
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i whose nonzero values are distinct and such that v_n = k.
Crossrefs:
A008278 is the version counted by omega A001221.
A336420 is the version counted by Omega A001222.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by Omega.
A022915 counts permutations of prime indices of superprimorials.
A098859 counts partitions with distinct multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
(End)

Examples

			Triangle starts:
   1;
   1,  1;
   2,  1,  2;
   5,  2,  3,  5;
  15,  5,  7, 10, 15;
  52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
  {1}{234}      {12}{34}    {123}{4}    {1234}
  {1}{2}{34}    {12}{3}{4}  {13}{24}    {124}{3}
  {1}{23}{4}                {13}{2}{4}  {134}{2}
  {1}{24}{3}                            {14}{23}
  {1}{2}{3}{4}                          {14}{2}{3}
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
    A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
    # alternative Maple program:
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
        end:
    T:= (n, k)-> b(n, 0, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 20 2018
  • Mathematica
    nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
  • Python
    # requires Python 3.2 or higher.
    from itertools import accumulate
    A095149_list, blist = [1,1,1], [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A095149_list += [blist[-1]]+ blist
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

With offset 1, T(n,1) = T(n,n) = T(n+1,2) = B(n-1) = A000110(n-1) (the Bell numbers). T(n,k) = T(n,k-1) + T(n-1,k-1) for n >= k >= 3. T(n,n-1) = B(n-1) - B(n-2) = A005493(n-3) for n >= 3 (B(q) are the Bell numbers A000110). T(n,k) = A011971(n-2,k-2) for n >= k >= 2. In other words, deleting the first row and first column we obtain Aitken's array A011971 (also called Bell or Pierce triangle; offset in A011971 is 0). - Emeric Deutsch, Oct 29 2006
T(n,1) = B(n-1); T(n,2) = B(n-2) for n >= 2; T(n,k) = Sum_{i=0..k-2} binomial(k-2,i)*B(n-2-i) for 3 <= k <= n, where B(q) are the Bell numbers (A000110). Generating polynomial of row n is P[n](t) = Q[n](t,1), where Q[n](t,s) = t^n*Q[n-1](1,s) + s*dQ[n-1](t,s)/ds + (s-1) Q[n-1](t,s); Q[1](t,s) = ts. - Emeric Deutsch, Oct 29 2006

Extensions

Corrected and extended by R. J. Mathar, Feb 05 2007
Entry revised by N. J. A. Sloane, Jun 01 2005, Jun 16 2007

A232472 2-Fubini numbers.

Original entry on oeis.org

2, 10, 62, 466, 4142, 42610, 498542, 6541426, 95160302, 1520385010, 26468935022, 498766780786, 10114484622062, 219641848007410, 5085371491003502, 125055112347154546, 3255163896227709422, 89416052656071565810, 2584886208925055791982, 78447137202259689678706, 2493719594804686310662382
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Examples

			G.f.: 2*x^2 + 10*x^3 + 62*x^4 + 466*x^5 + 4142*x^6 + 42610*x^7 + 498542*x^8 + ...
		

Crossrefs

Programs

  • Magma
    r:=2; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g., A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g., A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(2);
  • Mathematica
    Rest[max=20; t=Sum[n^(n - 1) x^n / n!, {n, 1, max}]; 2 Range[0, max]!CoefficientList[Series[D[1 / (1 - y (Exp[x] - 1)), y] /.y->1, {x, 0, max}], x]] (* Vincenzo Librandi Jan 03 2016 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 2], {n, 2, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

Let A(x) be the g.f. A232472, B(x) the g.f. A000670, then A(x) = (1-x)*B(x) - 1. - Sergei N. Gladkovskii, Nov 29 2013
a(n) = Sum_{k>=2} T_k*k^(n-2)/2^k where T_k is the (k-1)-st triangular number (i.e., T_k = k*(k-1)/2). - Derek Orr, Jan 01 2016
a(n) = 2*A069321(n-1). - Vincenzo Librandi, Jan 03 2016, corrected by Vaclav Kotesovec, Jul 01 2018
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 01 2018
From Peter Bala, Dec 08 2020: (Start)
a(n+2) = Sum_{k = 0..n} (k+2)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+2)^n ).
a(n+2) = Sum_{k = 0..n} 2^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+2)! ).
a(n) = 2*A069321(n-1) = A000670(n) - A000670(n-1).
a(n+1)= (1/2)*Sum_{k = 0..n} binomial(n,k)*A000670(k+1) for n >= 1.
E.g.f. with offset 0: 2*exp(2*z)/(2 - exp(z))^3 = 2 + 10*z + 62*z^2/2! + 466*z^3/3! + .... (End)

A033452 "STIRLING" transform of squares A000290.

Original entry on oeis.org

0, 1, 5, 22, 99, 471, 2386, 12867, 73681, 446620, 2856457, 19217243, 135610448, 1001159901, 7714225057, 61904585510, 516347066551, 4468588592739, 40058673825258, 371421499686007, 3556976106133821, 35138574378189700, 357654857584636597, 3746672593640388775
Offset: 0

Views

Author

Keywords

Comments

If an integer N is squarefree and has n+2 distinct prime factors then a(n) is the number of product signs needed to write the factorizations of N, so a(n)=A076277(N). - Floor van Lamoen, Oct 17 2002
Convolved with powers of 2 = A058681: (1, 7, 36, 171, 813, ...). Cf. triangle A180338. - Gary W. Adamson, Aug 28 2010

Examples

			G.f. = x + 5*x^2 + 22*x^3 + 99*x^4 + 471*x^5 + 2386*x^6 + 12867*x^7 + 73681*x^8 + ...
		

Crossrefs

Partial sums of A005494.
Cf. A180338.

Programs

  • Maple
    a := n -> add(Stirling2(n, j)*j^2, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Apr 18 2007
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, m^2, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 2 - 1/(1 - k*x)/(1 - x/(x - 1/g[k + 1])); gf = 1/x + 1/x^2 - g[0]/x^2; CoefficientList[ Series[gf, {x, 0, max}], x] (* Jean-François Alcover, Jan 24 2013, after Sergei N. Gladkovskii *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (exp(x + x * O(x^n)) - 1) * exp( exp(x + x * O(x^n)) - 1 + x), n))}; /* Michael Somos, Mar 28 2012 */

Formula

Representation as an infinite series: a(n) = (Sum_{k>=1} k^n*k*(k-2)/k!)/exp(1), n >= 1. This is a Dobinski-type summation formula. - Karol A. Penson, Mar 21 2002
a(n) = A005493(n) - A000110(n+1). - Floor van Lamoen and Christian Bower, Oct 16 2002. (n^2 has e.g.f.: e^x * (x^2+x), a(n) thus has e.g.f: e^(e^x-1) * ( (e^x-1)^2 + (e^x-1) ) which simplifies to e^(e^x-1) * (e^2x - e^x). A005493 has e.g.f.: e^(e^x+2x-1), A000110 has e.g.f.: e^(e^x-1), A000110(n+1) has as e.g.f.: derivative of A000110 which is e^(e^x+x-1).) [corrected by Georg Fischer, Jun 17 2020]
a(n) = Bell(n+2) - 2*Bell(n+1). - Vladeta Jovovic, Jul 28 2003
G.f.: sum{k>=0, k^2*x^k/prod[l=1..k, 1-lx]}. - Ralf Stephan, Apr 18 2004
E.g.f.: exp( exp(x) - 1 + x) * (exp(x) - 1). - Michael Somos, Mar 28 2012
a(n) = A123158(n,3). - Philippe Deléham, Oct 06 2006
G.f.: G(0)/x -1/x, where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (2*x+x*k-1)*(3*x+x*k-1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 25 2014

A059606 Expansion of (1/2)*(exp(2*x)-1)*exp(exp(x)-1).

Original entry on oeis.org

0, 1, 4, 16, 68, 311, 1530, 8065, 45344, 270724, 1709526, 11376135, 79520644, 582207393, 4453142140, 35500884556, 294365897104, 2533900264547, 22604669612078, 208656457858161, 1990060882027600
Offset: 0

Views

Author

Vladeta Jovovic, Jan 29 2001

Keywords

Comments

Starting (1, 4, 16, 68, 311, ...), = A008277 * A000217, i.e., the product of the Stirling2 triangle and triangular series. - Gary W. Adamson, Jan 31 2008

Crossrefs

Programs

  • Maple
    s := series(1/2*(exp(2*x)-1)*exp(exp(x)-1), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
  • Mathematica
    With[{nn=20},CoefficientList[Series[((Exp[2x]-1)Exp[Exp[x]-1])/2,{x,0,nn}] ,x] Range[0,nn]!] (* Harvey P. Dale, Nov 10 2011 *)

Formula

a(n) = Sum_{i=0..n} Stirling2(n, i)*binomial(i+1, 2).
a(n) = (1/2)*(Bell(n+2)-Bell(n+1)-Bell(n)). - Vladeta Jovovic, Sep 23 2003
G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018
a(n) ~ n^2 * Bell(n) / (2*LambertW(n)^2) * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

A101851 a(n) = Sum_{k=0..n} (-1)^(n-k)*k*Stirling2(n,k).

Original entry on oeis.org

0, 1, 1, -2, -1, 11, -18, -41, 317, -680, -1767, 19911, -68264, -59643, 2076973, -11905466, 18577387, 269836343, -2819431570, 12357816867, 17355428041, -752675321800, 6318046208653, -21416130683133, -152569023028272, 3016508107668601, -23667435182395287
Offset: 0

Views

Author

Vladeta Jovovic, Jan 27 2005

Keywords

Crossrefs

Programs

  • Maple
    A101851 := proc(n) local k;
    add((-1)^(n-k)*k*combinat[stirling2](n,k), k = 0..n) end:
    seq(A101851(n),n = 0..26); # Peter Luschny, Apr 17 2011
  • Mathematica
    Table[Sum[(-1)^(n-k) k StirlingS2[n,k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Aug 09 2013 *)
    Table[(-1)^n (BellB[n, -1] + BellB[n + 1, -1]), {n, 0, 25}] (* Vladimir Reshetnikov, Oct 21 2015 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k*stirling(n, k, 2)); \\ Michel Marcus, Oct 22 2015

Formula

E.g.f.: (1-exp(-x))*exp(1-exp(-x)): G.f.: Sum(k*x^k/Product(1+l*x, l = 1 .. k), k = 1 .. infinity).
a(n) = Sum_{k=0..n} (-1)^(k+1)*binomial(n,k)*A000587(k+2). - Peter Luschny, Apr 17 2011
G.f.: x*G(0)/(1+x) where G(k) = 1 + 2*x*(k+1)/((2*k+1)*(2*x*k+2*x+1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x+1)/(x*(2*k+3) + 2*(k+1)*(2*x*k+3*x+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1/x - G(0)/x, where G(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (x*k + 1 - x)*(x*k + 1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 06 2014
a(n) = (-1)^n*(A000587(n)+A000587(n+1)). - Vladimir Reshetnikov, Oct 21 2015
Previous Showing 21-30 of 86 results. Next