A052203
a(n) = (4n+1)*binomial(4n,n)/(3n+1).
Original entry on oeis.org
1, 5, 36, 286, 2380, 20349, 177100, 1560780, 13884156, 124403620, 1121099408, 10150595910, 92263734836, 841392966470, 7694644696200, 70539987842520, 648045936942300, 5964720367660956, 54991682779774384, 507749884105448600, 4694436188839116720
Offset: 0
-
a052203 n = a122366 (2 * n) n -- Reinhard Zumkeller, Mar 14 2014
-
[Binomial(4*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
-
Table[Binomial[4 n + 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
-
vector(30, n, n--; (4*n+1)*binomial(4*n,n)/(3*n+1)) \\ Altug Alkan, Nov 05 2015
A094527
Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 2 1
2: 6 4 1
3: 20 15 6 1
4: 70 56 28 8 1
5: 252 210 120 45 10 1
6: 924 792 495 220 66 12 1
7: 3432 3003 2002 1001 364 91 14 1
8: 12870 11440 8008 4368 1820 560 120 16 1
9: 48620 43758 31824 18564 8568 3060 816 153 18 1
10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1
... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012
From _Paul Barry_, Sep 07 2009: (Start)
Production array is
2, 1,
2, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Nov 22 2012: (Start)
Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6.
Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
-
A094527 := proc(n,k)
binomial(2*n,n-k) ;
end proc: # R. J. Mathar, Jun 04 2013
-
T[n_, k_] := Binomial[2*n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A386811
a(n) = Sum_{k=0..n} binomial(4*n+1,k).
Original entry on oeis.org
1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0
-
[&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+1, k));
A060539
Table by antidiagonals of number of ways of choosing k items from n*k.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 6, 20, 70, 252, 924, 3432, ...
3, 15, 84, 495, 3003, 18564, 116280, ...
4, 28, 220, 1820, 15504, 134596, 1184040, ...
5, 45, 455, 4845, 53130, 593775, 6724520, ...
6, 66, 816, 10626, 142506, 1947792, 26978328, ...
7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
-
A:= (n, k)-> binomial(n*k, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Jul 28 2023
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009
A169958
a(n) = binomial(9*n, n).
Original entry on oeis.org
1, 9, 153, 2925, 58905, 1221759, 25827165, 553270671, 11969016345, 260887834350, 5720645481903, 126050526132804, 2788629694000605, 61902409203193230, 1378095785451705375, 30756373941461374800, 687917389635036844569, 15415916972482007401455, 346051021610256116115150
Offset: 0
A004331
Binomial coefficient C(4n,n-1).
Original entry on oeis.org
1, 8, 66, 560, 4845, 42504, 376740, 3365856, 30260340, 273438880, 2481256778, 22595200368, 206379406870, 1889912732400, 17345898649800, 159518999862720, 1469568786235308, 13559593014190944, 125288932441604200, 1159120046626942400, 10735998891545372445
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
-
#A004331
seq(binomial(4*n - 1,n), n = 0..20);
-
a[n_] := Binomial[4*n, n - 1]; Array[a, 19] (* Amiram Eldar, May 09 2020 *)
-
vector(30, n, binomial(4*n, n-1)) \\ Altug Alkan, Nov 05 2015
A004381
Binomial coefficient C(8n,n).
Original entry on oeis.org
1, 8, 120, 2024, 35960, 658008, 12271512, 231917400, 4426165368, 85113005120, 1646492110120, 32006008361808, 624668654531480, 12233149001721760, 240260199935164200, 4730523156632595024, 93343021201262177400, 1845382436487682488000
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A004368
Binomial coefficient C(7n,n).
Original entry on oeis.org
1, 7, 91, 1330, 20475, 324632, 5245786, 85900584, 1420494075, 23667689815, 396704524216, 6681687099710, 112992892764570, 1917283000904460, 32626924340528840, 556608279578340080, 9516306085765295355, 163011740982048945441
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
-
[Binomial(7*n,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
-
Table[Binomial[7n,n],{n,0,20}] (* Harvey P. Dale, Apr 05 2014 *)
-
B(x):=sum(binomial(7*n,n-1)/n*x^n,n,1,30);
taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
-
a(n) = binomial(7*n,n) \\ Altug Alkan, Oct 05 2015
A147855
G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347
Offset: 0
G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).
-
Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
-
{a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}
for(n=0, 30, print1(a(n), ", "))
A348614
Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum.
Original entry on oeis.org
0, 9, 11, 14, 130, 133, 135, 138, 141, 143, 148, 153, 155, 158, 168, 177, 179, 182, 188, 208, 225, 227, 230, 236, 248, 2052, 2057, 2059, 2062, 2066, 2069, 2071, 2074, 2077, 2079, 2084, 2089, 2091, 2094, 2098, 2101, 2103, 2106, 2109, 2111, 2120, 2129, 2131
Offset: 1
The terms together with their binary indices begin:
0: ()
9: (3,1)
11: (2,1,1)
14: (1,1,2)
130: (6,2)
133: (5,2,1)
135: (5,1,1,1)
138: (4,2,2)
141: (4,1,2,1)
143: (4,1,1,1,1)
148: (3,2,3)
153: (3,1,3,1)
155: (3,1,2,1,1)
158: (3,1,1,1,2)
The unordered case (partitions) is counted by
A000712, reverse
A006330.
These compositions are counted by
A262977.
Except for 0, a subset of
A345917 (which is itself a subset of
A345913).
A000346 = even-length compositions with alt sum != 0, complement
A001700.
A034871 counts compositions of 2n with alternating sum 2k.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
A345197 counts compositions by length and alternating sum.
Cf.
A008549,
A013777,
A027306,
A058622,
A088218,
A114121,
A120452,
A126869,
A163493,
A294175,
A344604.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&]
Comments