cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A103881 Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 42, 18, 2, 1, 30, 110, 92, 24, 2, 1, 42, 240, 340, 162, 30, 2, 1, 56, 462, 1010, 780, 252, 36, 2, 1, 72, 812, 2562, 2970, 1500, 362, 42, 2, 1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48, 2, 1, 110, 2070, 11832, 26474, 27174, 14240, 4060, 642, 54, 2, 1, 132, 3080, 22530, 66222, 91112, 65226, 26070, 6040, 812, 60, 2
Offset: 1

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

T(n,k) is the number of integer sequences of length n+1 with sum zero and sum of absolute values 2k. - R. H. Hardin, Feb 23 2009

Examples

			Array begins:
  1,   2,     2,      2,       2,        2,         2,          2, ... A040000;
  1,   6,    12,     18,      24,       30,        36,         42, ... A008458;
  1,  12,    42,     92,     162,      252,       362,        492, ... A005901;
  1,  20,   110,    340,     780,     1500,      2570,       4060, ... A008383;
  1,  30,   240,   1010,    2970,     7002,     14240,      26070, ... A008385;
  1,  42,   462,   2562,    9492,    27174,     65226,     137886, ... A008387;
  1,  56,   812,   5768,   26474,    91112,    256508,     623576, ... A008389;
  1,  72,  1332,  11832,   66222,   271224,    889716,    2476296, ... A008391;
  1,  90,  2070,  22530,  151560,   731502,   2777370,    8809110, ... A008393;
  1, 110,  3080,  40370,  322190,  1815506,   7925720,   28512110, ... A008395;
  1, 132,  4422,  68772,  643632,  4197468,  20934474,   85014204, ... A035837;
  1, 156,  6162, 112268, 1219374,  9129276,  51697802,  235895244, ... A035838;
  1, 182,  8372, 176722, 2206932, 18827718, 120353324,  614266354, ... A035839;
  1, 210, 11130, 269570, 3838590, 37060506, 265953170, 1511679210, ... A035840;
  ...
Antidiagonals:
  1;
  1,  2;
  1,  6,    2;
  1, 12,   12,    2;
  1, 20,   42,   18,    2;
  1, 30,  110,   92,   24,    2;
  1, 42,  240,  340,  162,   30,    2;
  1, 56,  462, 1010,  780,  252,   36,   2;
  1, 72,  812, 2562, 2970, 1500,  362,  42,  2;
  1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48,  2;
		

Crossrefs

Programs

  • GAP
    T:=Flat(List([1..12],n->Concatenation([1],List([1..n-1],k->Sum([1..n],i->Binomial(n-k+1,i)*Binomial(k-1,i-1)*Binomial(n-i,k)))))); # Muniru A Asiru, Oct 14 2018
    
  • Magma
    A103881:= func< n,k | k le 0 select 1 else (&+[Binomial(n-k+1, j)*Binomial(k-1, j-1)*Binomial(n-j, k): j in [1..n-k]]) >;
    [A103881(n,k): k in [0..n-1], n in [1..15]]; // G. C. Greubel, Oct 16 2018; May 24 2023
    
  • Maple
    T:=proc(n,k) option remember; local i;
    if k=0 then 1 else
    add( binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k),i=1..n); fi;
    end:
    g:=n->[seq(T(n-i,i),i=0..n-1)]:
    for n from 1 to 14 do lprint(op(g(n))); od:
  • Mathematica
    T[n_, k_]:= (n+1)*(n+k-1)!*HypergeometricPFQ[{1-k,1-n,-n}, {2,-n-k+1}, 1]/(k!*(n-1)!); T[, 0]=1; Flatten[Table[T[n-k, k], {n,12}, {k,0,n-1}]] (* _Jean-François Alcover, Dec 27 2012 *)
  • PARI
    A103881(n,k) = if(k==0, 1, sum(j=1, n-k, binomial(n-k+1, j)*binomial(k-1, j-1)*binomial(n-j, k)));
    for(n=1, 15, for(k=0, n-1, print1(A103881(n,k), ", "))) \\ G. C. Greubel, Oct 16 2018; May 24 2023
    
  • SageMath
    def A103881(n,k): return 1 if k==0 else (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1).simplify()
    flatten([[A103881(n,k) for k in range(n)] for n in range(1,16)]) # G. C. Greubel, May 24 2023

Formula

T(n,k) = Sum_{i=1..n} C(n+1, i)*C(k-1, i-1)*C(n-i+k, k), T(n,0)=1.
G.f. of n-th row: (Sum_{i=0..n} C(n, i)^2*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
T(n, k) = Sum_{j=0..n} binomial(n,j)^2 * binomial(n+k-j-1, n-1) (array).
T(n, k) = (n+1)*binomial(n+k-1,k)*hypergeometric([-n,1-n,1-k], [2,1-n-k], 1), with T(n, k) = 1 (array).
t(n, k) = (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1), with t(n, 0) = 1 (antidiagonals).
Sum_{k=0..n-1} t(n, k) = A047085(n). (End)
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Legendre_P(n, (1 + x)/(1 - x)).
(n+1)*T(n+1,k) = (n+1)*T(n+1,k-1) + (2*n+1)*(T(n,k) + T(n,k-1)) - n*(T(n-1,k) - T(n-1,k-1)). (End)

Extensions

Corrected by N. J. A. Sloane, Dec 15 2012, at the suggestion of Manuel Blum

A004015 Theta series of face-centered cubic (f.c.c.) lattice.

Original entry on oeis.org

1, 12, 6, 24, 12, 24, 8, 48, 6, 36, 24, 24, 24, 72, 0, 48, 12, 48, 30, 72, 24, 48, 24, 48, 8, 84, 24, 96, 48, 24, 0, 96, 6, 96, 48, 48, 36, 120, 24, 48, 24, 48, 48, 120, 24, 120, 0, 96, 24, 108, 30, 48, 72, 72, 32, 144, 0, 96, 72, 72, 48, 120, 0, 144, 12, 48, 48, 168, 48, 96
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 12*x + 6*x^2 + 24*x^3 + 12*x^4 + 24*x^5 + 8*x^6 + 48*x^7 + 6*x^8 + ...
G.f. = 1 + 12*q^2 + 6*q^4 + 24*q^6 + 12*q^8 + 24*q^10 + 8*q^12 + 48*q^14 + 6*q^16 + ...
From _Michael Somos_, Jan 05 2012: (Start)
a(2) = 6 since (1, -1, -1) is a solution to x^2 + y^2 + z^2 + x*y + x*z + y*z = 2 and the other 5 solutions are permutations and negations of this one.
a(2) = 6 since (1, 1, -1, -1) is a solution to x + y + z + w = 0 and x^2 + y^2 + z^2 + w^2 = 4 and the other 5 solutions are permutations of this one. (End)
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 113.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 263.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
  • L. V. Woodcock, Nature, Jan 09 1997, pp. 141-143.

Crossrefs

Cf. A004013, A005875, A005901, A045828. A055039 gives the positions of the 0's in this sequence.
Cf. A000007, A000122, A004016, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_2, A_4, ...)

Programs

  • Magma
    L := Lattice("A",3); A := ThetaSeries(L, 140); A; /* Michael Somos, Nov 13 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 3/2), 70); A[1] + 12*A[2] + 6*A[3] + 24*A[4]; /* Michael Somos, Sep 08 2018 */
    
  • Maple
    maxd := 201: temp0 := trunc(evalf(sqrt(maxd)))+2: a := 0: for i from -temp0 to temp0 do a := a+q^( (i+1/2)^2): od: th2 := series(a,q,maxd); a := 0: for i from -temp0 to temp0 do a := a+q^(i^2): od: th3 := series(a,q,maxd); th4 := series(subs(q=-q, th3),q,maxd); series((1/2)*(th3^3+th4^3),q,200);
  • Mathematica
    a[n_] := SquaresR[3, 2n]; Table[a[n], {n, 0, 69}] (* Jean-François Alcover, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^3 + EllipticTheta[ 4, 0, q]^3) / 2, {q, 0, 2 n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2]^3 + 12 q QPochhammer[ q^4]^3 QPochhammer[ q^8]^2 / QPochhammer[ q^2]^2, {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    SquaresR[3,2*Range[0,70]] (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n*=2; polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^3, n))}; /* Michael Somos, Oct 25 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^5 / eta(x^2 + A)^2 / eta(x^8 + A)^2)^3 + 12 * x * eta(x^4 + A)^3 * eta(x^8 + A)^2 / eta(x^2 + A)^2, n))}; /* Michael Somos, May 17 2008 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [2, 1, 1; 1, 2, 1; 1, 1, 2], n, 1)[n])}; /* Michael Somos, Jan 02 2012 */
    
  • Python
    from math import prod, isqrt
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1
    def A004015(n): return A004018(m:=n<<1)+(sum(A004018(m-k**2) for k in range(1,isqrt(m)+1))<<1) # Chai Wah Wu, Feb 24 2025

Formula

Expansion of phi(q^2)^3 + 12 * q * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
Expansion of (phi(q)^3 + phi(-q)^3) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006
Expansion of b(q) * phi(q^18) + c(q^3) * phi(q^2) in powers of q^3 where b(), c() are cubic AGM theta functions and phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006
Expansion of (theta_3(q)^3 + theta_4(q)^3) / 2 in powers of q^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004013.
a(n) = A005875(2*n).
G.f.: Sum_{i, j, k in Z} x^( i*i + j*j + k*k + i*j + i*k + j*k ). - Michael Somos, Jan 02 2012
From Michael Somos, Jan 05 2012: (Start)
Number of integer solutions to x^2 + y^2 + z^2 + x*y + x*z + y*z = n.
Number of integer solutions to x + y + z even and x^2 + y^2 + z^2 = 2 * n.
Number of integer solutions to x + y + z + w = 0 and x^2 + y^2 + z^2 + w^2 = 2 * n. (End)
a(2*n) = A005875(n). a(2*n+1) = 12 * A045828(n). - Michael Somos, Dec 28 2017

A008354 a(n) = (5*n^2 + 1)*n^2 / 6.

Original entry on oeis.org

0, 1, 14, 69, 216, 525, 1086, 2009, 3424, 5481, 8350, 12221, 17304, 23829, 32046, 42225, 54656, 69649, 87534, 108661, 133400, 162141, 195294, 233289, 276576, 325625, 380926, 442989, 512344, 589541, 675150, 769761, 873984, 988449, 1113806, 1250725, 1399896
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A005902. - Jonathan Vos Post, Mar 14 2006

Crossrefs

Programs

  • GAP
    List([0..30], n -> (5*n^2+1)*n^2/6); # Muniru A Asiru, Feb 12 2018
  • Maple
    a:= n-> 5*n^4/6 + n^2/6: seq(a(n), n=0..45);
  • Mathematica
    Table[n^2 (5 n^2 + 1)/6, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 14, 69, 216}, 30] (* Harvey P. Dale, Feb 12 2015 *)

Formula

From R. J. Mathar, Aug 10 2008: (Start)
O.g.f.: x*(1 + x)*(x^2 + 8*x + 1)/(1 - x)^5.
a(n) = n*A004068(n). (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4, a(0)=0, a(1)=1, a(2)=14, a(3)=69, a(4)=216. - Harvey P. Dale, Feb 12 2015

Extensions

Definition corrected by R. J. Mathar, Aug 10 2008

A008383 Coordination sequence for A_4 lattice.

Original entry on oeis.org

1, 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750, 15620, 20260, 25740, 32130, 39500, 47920, 57460, 68190, 80180, 93500, 108220, 124410, 142140, 161480, 182500, 205270, 229860, 256340, 284780, 315250, 347820, 382560, 419540, 458830, 500500, 544620
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 5*n*(7*n^2+5)/3: n in [0..45]]; // G. C. Greubel, May 25 2023
    
  • Maple
    a:= n-> `if`(n=0, 1, 35/3*n^3+25/3*n): seq (a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[(1+16x+36x^2+16x^3+x^4)/(1-x)^4,{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
    Join[{1}, LinearRecurrence[{4, -6, 4, -1}, {20, 110, 340, 780}, 40]] (* Jean-François Alcover, Jan 07 2019 *)
  • SageMath
    [5*n*(7*n^2+5)/3+int(n==0) for n in range(46)] # G. C. Greubel, May 25 2023

Formula

a(n) = 5*n*(7*n^2 + 5)/3, a(0) = 1.
G.f.: (1+16*x+36*x^2+16*x^3+x^4)/(1-x)^4 = 1+10*x*(2+3*x+2*x^2)/(x-1)^4. - Colin Barker, Apr 13 2012
E.g.f.: (1/3)*(3 + 5*x*(12 + 21*x + 7*x^2)*exp(x)). - G. C. Greubel, May 25 2023

A093485 a(n) = (27*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 19, 64, 136, 235, 361, 514, 694, 901, 1135, 1396, 1684, 1999, 2341, 2710, 3106, 3529, 3979, 4456, 4960, 5491, 6049, 6634, 7246, 7885, 8551, 9244, 9964, 10711, 11485, 12286, 13114, 13969, 14851, 15760, 16696, 17659, 18649, 19666, 20710, 21781
Offset: 0

Views

Author

Michael Joseph Halm, May 13 2004

Keywords

Comments

Dodecahedral gnomon numbers: first differences of dodecahedral numbers.
The sequence is related to other gnomon numbers of polyhedra, known by other more familiar names: triangular numbers (tetrahedral gnomon numbers), hexagonal numbers (cubic gnomon numbers), square pyramidal numbers (octahedral gnomon numbers).
A124388 = first differences; second differences = 27. - Reinhard Zumkeller, Oct 30 2006
Sums of the triangular numbers from A000217(3*n-1) to A000217(3*n+1), with A000217(-1) = 0. - Bruno Berselli, Sep 04 2018

Examples

			a(1) = 19 because (1+1)*(3*(1+1)-1)*(3*(1+1)-2)/2-1*(3*1-1)*(3*1-2)/2 = 2*(6-1)*(6-2)/2 - 1*(3-1)*(3-2)/2 = 20-1 = 19.
		

Crossrefs

Programs

Formula

a(n) = (n+1)*(3*(n+1)-1)*(3*(n+1)-2)/2-n*(3*n-1)*(3*n-2)/2.
G.f.: (1 + 16*x + 10*x^2)/(1 - x)^3. - Colin Barker, Mar 28 2012

Extensions

New definition from Ralf Stephan, Dec 01 2004
Name corrected and initial term added by Arkadiusz Wesolowski, Aug 15 2011

A071336 Number of vertices of Goldberg-Casper-Klug pseudo-icosahedra.

Original entry on oeis.org

12, 32, 42, 72, 92, 122, 132, 162, 192, 212, 252, 272, 282, 312, 362, 372, 392, 432, 482, 492, 522, 572, 612, 632, 642, 672, 732, 752, 762, 792, 812, 842, 912, 932, 972, 1002, 1032, 1082, 1092, 1112, 1122, 1172, 1212, 1242, 1272, 1292, 1332, 1392, 1442, 1472
Offset: 1

Views

Author

Lekraj Beedassy, Oct 30 2003

Keywords

Comments

Refers to the capsomere count in virus architectural structures. Since the Loeschian numbers (A003136) of the form x^2 + xy + y^2 reduce to squares (A000290) when either x or y equals 0, a(n) contains A005901 which is 10*n^2 + 2.

References

  • I. Stewart, "Game, Set and Math", Chapter 6, Table 6.1 pp. 81 Penguin London 1991.

Crossrefs

Programs

Formula

a(n) = 10*A003136(n+1) + 2. [corrected by Georg Fischer, Jun 17 2020]

A093500 a(n) = (15*n^2 + 5*n + 2)/2.

Original entry on oeis.org

11, 36, 76, 131, 201, 286, 386, 501, 631, 776, 936, 1111, 1301, 1506, 1726, 1961, 2211, 2476, 2756, 3051, 3361, 3686, 4026, 4381, 4751, 5136, 5536, 5951, 6381, 6826, 7286, 7761, 8251, 8756, 9276, 9811, 10361, 10926, 11506, 12101, 12711, 13336, 13976, 14631, 15301
Offset: 1

Views

Author

Michael Joseph Halm, May 13 2004

Keywords

Comments

Icosahedral gnomic numbers: first differences of icosahedral numbers.
The sequence is related to other gnomons of polyhedra, known by other more familiar names: triangular (tetrahedral gnomic), hex (cubic gnomic), square pyramidal numbers (octahedral gnomic).

Crossrefs

Programs

Formula

From Colin Barker, Apr 30 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (6*x^2 + 8*x + 1)/(1-x)^3. (End)
E.g.f.: exp(x)*(1 + 10*x + 15*x^2/2). - Elmo R. Oliveira, Oct 21 2024

Extensions

New definition from Ralf Stephan, Dec 01 2004
Name corrected by Arkadiusz Wesolowski, Aug 15 2011

A344126 Coordination sequence for the hypertriangular lattice.

Original entry on oeis.org

1, 6, 24, 48, 86, 138, 192, 260, 348, 432, 530, 654, 768, 896, 1056, 1200, 1358, 1554, 1728, 1916, 2148, 2352, 2570, 2838, 3072, 3320, 3624, 3888, 4166, 4506, 4800, 5108, 5484, 5808, 6146, 6558, 6912, 7280, 7728, 8112, 8510, 8994, 9408, 9836, 10356, 10800
Offset: 0

Views

Author

Sean A. Irvine, May 09 2021

Keywords

Crossrefs

Formula

G.f.: (1+5*x+18*x^2+22*x^3+28*x^4+16*x^5+7*x^6-3*x^7+2*x^8) / ((x^2+x+1)^2 * (1-x)^3).

A010022 a(0) = 1, a(n) = 40*n^2 + 2 for n>0.

Original entry on oeis.org

1, 42, 162, 362, 642, 1002, 1442, 1962, 2562, 3242, 4002, 4842, 5762, 6762, 7842, 9002, 10242, 11562, 12962, 14442, 16002, 17642, 19362, 21162, 23042, 25002, 27042, 29162, 31362, 33642, 36002, 38442, 40962, 43562, 46242, 49002, 51842, 54762, 57762, 60842
Offset: 0

Views

Author

Keywords

Comments

First bisection of A005901. - Bruno Berselli, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [40*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 40 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {42, 162, 362}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+38*x+x^2)/(1-x)^3; a(n) = A008253(4n). - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*40+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(5)/40*Pi*coth(Pi*sqrt(5)/10) = 1.03983104279172.. - R. J. Mathar, May 07 2024
a(n) = 2*A158493(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195317(n)+A195317(n+1) = 2+10*A016742(n), n>0. - R. J. Mathar, May 07 2024

A122973 Number of vertices on the surface of an icosahedron.

Original entry on oeis.org

1, 12, 42, 162, 642, 2562, 10242, 40962, 163842, 655362, 2621442, 10485762, 41943042, 167772162, 671088642, 2684354562, 10737418242, 42949672962, 171798691842, 687194767362, 2748779069442, 10995116277762, 43980465111042, 175921860444162, 703687441776642
Offset: 0

Views

Author

Alden Chew (aldenc98(AT)yahoo.com), Oct 27 2006

Keywords

Crossrefs

Cf. A005901.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{5,-4},{12,42},30]] (* or *) CoefficientList[ Series[1-6x (-2+3x)/((4x-1)(x-1)),{x,0,30}],x] (* Harvey P. Dale, May 05 2011 *)

Formula

a(n) = 1 if n=0, 10*4^(n-1)+2 otherwise.
G.f.: 1-6*x*(-2+3*x) / ( (4*x-1)*(x-1) ). - R. J. Mathar, Feb 02 2011
For a(n)>1: a(1)=12, a(2)=42, a(n) = 5*a(n-1)-4*a(n-2). [Harvey P. Dale, May 05 2011]
Previous Showing 51-60 of 63 results. Next