cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 245 results. Next

A050469 a(n) = Sum_{ d divides n, n/d=1 mod 4} d - Sum_{ d divides n, n/d=3 mod 4} d.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 6, 8, 7, 12, 10, 8, 14, 12, 12, 16, 18, 14, 18, 24, 12, 20, 22, 16, 31, 28, 20, 24, 30, 24, 30, 32, 20, 36, 36, 28, 38, 36, 28, 48, 42, 24, 42, 40, 42, 44, 46, 32, 43, 62, 36, 56, 54, 40, 60, 48, 36, 60, 58, 48, 62, 60, 42, 64, 84, 40
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative with a(p^e)=p^e if p=2, (p^(e+1)-1)/(p-1) if p==1 (mod 4), else (p^(e+1)+(-1)^e)/(p+1). - Michael Somos, May 02 2005
Multiplicative because it is the Dirichlet convolution of A000027 = n and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Programs

  • Mathematica
    max = 70; s = Sum[n*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015 *)
    f[p_, e_] := Which[p == 2, p^e, Mod[p, 4] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 4] == 3, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 06 2022 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*((n/d%4==1)-(n/d%4==3))))
    
  • PARI
    {a(n)=local(A,p,e); if(n<2, n==1, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, p^e, if(p%4==1, (p^(e+1)-1)/(p-1), (p^(e+1)+(-1)^e)/(p+1)))))) } /* Michael Somos, May 02 2005 */
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(1+x^(2*k)),x*O(x^n)),n))

Formula

G.f.: Sum_{n>=1} n*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
L.g.f.: Sum_{k>=1} arctan(x^k). - Ilya Gutkovskiy, Dec 16 2019
O.g.f.: Sum_{n >= 1} (-1)^(n+1) * x^(2*n-1)/(1 - x^(2*n-1))^2. - Peter Bala, Jan 04 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 4)} 1/(1-1/p^2) * Product_{primes p == 3 (mod 4)} 1/(1+1/p^2) = (1/2) * A175647 / A243381 = A006752/2 = 0.4579827970... . - Amiram Eldar, Nov 06 2022, Nov 05 2023
a(n) = Sum_{d|n} (n/d)*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

A060968 Number of solutions to x^2 + y^2 == 1 (mod n).

Original entry on oeis.org

1, 2, 4, 8, 4, 8, 8, 16, 12, 8, 12, 32, 12, 16, 16, 32, 16, 24, 20, 32, 32, 24, 24, 64, 20, 24, 36, 64, 28, 32, 32, 64, 48, 32, 32, 96, 36, 40, 48, 64, 40, 64, 44, 96, 48, 48, 48, 128, 56, 40, 64, 96, 52, 72, 48, 128, 80, 56, 60, 128, 60, 64, 96, 128, 48, 96, 68, 128, 96, 64, 72
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001

Keywords

Comments

From Jianing Song, Nov 05 2019: (Start)
a(n) is also the order of the group SO(2,Z_n), i.e., the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1] and det(A) = 1. Elements in SO(2,Z_n) are of the form [x,y;-y,x] where x^2+y^2 == 1 (mod n). For example, SO(2,Z_4) = {[1,0;0,1], [0,1;3,0], [1,2;2,1], [2,1;3,2], [3,0;0,3], [0,3;1,0], [3,2;2,3], [2,3;1,2]}. Note that SO(2,Z_n) is abelian, and it is isomorphic to the multiplicative group G_n := {x+yi: x^2 + y^2 = 1, x,y in Z_n} where i = sqrt(-1), by the mapping [x,y;-y,x] <-> x+yi. See my link below for the group structure of SO(2,Z_n).
The exponent of SO(2,Z_n) (i.e., least e > 0 such that x^e = E for every x in SO(2,Z_n)) is given by A235863(n).
The rank of SO(2,Z_n) (i.e., the minimum number of generators) is omega(n) if n is not divisible by 4, omega(n)+1 if n is divisible by 4 but not by 8 and omega(n)+2 if n is divisible by 8, omega = A001221. (End)
In general, let R be any commutative ring with unity, O(m,R) be the group of m X m matrices A over R such that A*A^T = E and SO(m,R) be the group of m X m matrices A over R such that A*A^T = E and det(A) = 1, then O(m,R)/SO(m,R) = {square roots of unity in R*}, where R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in O(m,R), then f is a surjective homomorphism from O(m,R) to {square roots of unity in R*}, and SO(m,R) is its kernel. See also A182039. - Jianing Song, Nov 08 2019

Examples

			a(3) = 4 because the 4 solutions are (0,1), (0,2), (1,0), (2,0).
		

Crossrefs

Programs

  • Haskell
    a060968 1 = 1
    a060968 n = (if p == 2 then (if e == 1 then 2 else 2^(e+1)) else 1) *
       (product $ zipWith (*) (map (\q -> q - 2 + mod q 4) ps'')
                              (zipWith (^) ps'' (map (subtract 1) es'')))
       where (ps'', es'') = if p == 2 then (ps, es) else (ps', es')
             ps'@(p:ps) = a027748_row n; es'@(e:es) = a124010_row n
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    fa=FactorInteger; phi[p_,s_] := Which[Mod[p,4] == 1, p^(s-1)*(p-1), Mod[p,4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i,1]], fa[n][[i,2]]], {i, Length[fa[n]]}]; Table[phi[n], {n,1,100}]
  • PARI
    a(n)=my(f=factor(n)[,1]);n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4,1,2) \\ Charles R Greathouse IV, Apr 16 2012
    

Formula

Multiplicative, with a(2^e) = 2 if e = 1 or 2^(e+1) if e > 1, a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4), a(p^e) = (p+1)*p^(e-1) if p == 3 (mod 4). - David W. Wilson, Jun 19 2001
a(n) = n * (Product_{prime p|n, p == 1 (mod 4)} (1 - 1/p)) * (Product_{prime p|n, p == 3 (mod 4)} (1 + 1/p)) * (1 + [4|n]) where "[ ]" is the Iverson bracket. - Ola Veshta (olaveshta(AT)my-deja.com), May 18 2001
a(n) = A182039(n)/A060594(n). - Jianing Song, Nov 08 2019
Sum_{k=1..n} a(k) ~ c * n^2 + O(n*log(n)), where c = 5/(8*G) = 0.682340..., where G is Catalan's constant (A006752) (Tóth, 2014). - Amiram Eldar, Oct 18 2022

A077591 Maximum number of regions into which the plane can be divided using n (concave) quadrilaterals.

Original entry on oeis.org

1, 2, 18, 50, 98, 162, 242, 338, 450, 578, 722, 882, 1058, 1250, 1458, 1682, 1922, 2178, 2450, 2738, 3042, 3362, 3698, 4050, 4418, 4802, 5202, 5618, 6050, 6498, 6962, 7442, 7938, 8450, 8978, 9522, 10082, 10658, 11250, 11858, 12482, 13122, 13778
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Comments

Sequence found by reading the segment (1, 2) together with the line from 2, in the direction 2, 18, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 05 2011
For a(n) > 1, a(n) are the numbers such that phi(sum of the odd divisors of a(n)) = phi(sum of even divisors of a(n)). - Michel Lagneau, Sep 14 2011
Apart from first term, subsequence of A195605. - Bruno Berselli, Sep 21 2011
Engel expansion of 1F2(1; 1/2, 1/2; 1/8). - Benedict W. J. Irwin, Jun 21 2018
Let f(n) = 4*n^2 - 5, then (x, y, z) = (a(n+1), -f(n), -f(n + 1)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 512. - XU Pingya, Apr 25 2022

Examples

			a(2) = 18 if you draw two concave quadrilaterals such that all four sides of one cross all four sides of the other.
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..2000], n->8*n^2 - 8*n + 2)); # Muniru A Asiru, Jan 29 2018
  • Maple
    A077591:=n->`if`(n=0, 1, 8*n^2 - 8*n + 2); seq(A077591(n), n=0..50); # Wesley Ivan Hurt, Mar 12 2014
  • Mathematica
    Table[2*(4*n^2 - 4*n + 1), {n,0,50}] (* G. C. Greubel, Jul 15 2017 *)
  • PARI
    isok(n) = (sod = sumdiv(n, d, (d%2)*d)) && (sed = sumdiv(n, d, (1 - d%2)*d)) && (eulerphi(sod) == eulerphi(sed)); \\ from Michel Lagneau comment; Michel Marcus, Mar 15 2014
    

Formula

a(n) = 8*n^2 - 8*n + 2 = 2*(2*n-1)^2, n > 0, a(0)=1.
Proof from Keyang Li, Jun 18 2022: (Start)
Represent the configuration of n concave quadrilaterals by a planar graph with a node for each vertex of the quadrilaterals and for each intersection point. Let there be v_n nodes and e_n edges. By Euler's formula for planar graphs, a(n) = e_n - v_n + 2. When we go from n to n+1 quadrilaterals, each side of the new quadrilateral can meet each side of the existing quadrilaterals at most 4 times, so Dv_n := v_{n+1} - v_n <= 4*4n = 16n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1} - e_n = 4 + 2*Dv_n, Da_n := a(n+1) - a(n) = 4 + Dv_n <= 4+16*n.
These upper bounds can be achieved by taking n interwoven concave quadrilaterals (for n=1,2,3 see the attached Keyang Li links), and we achieve a(n) = 8n^2 - 8n + 2 (and v_n = 8n^2 - 4n, e_n = 4n*(4n-3)) for n > 0. QED (End)
For n > 0: A071974(a(n)) = 2*n+1, A071975(a(n)) = 2. - Reinhard Zumkeller, Jul 10 2011
a(n) = 1 + A069129(n), if n >= 1. - Omar E. Pol, Sep 05 2011
a(n) = 2*A016754(n-1), if n >= 1. - Omar E. Pol, Sep 05 2011
G.f.: (1 - x + 15*x^2 + x^3)/(1-x)^3. - Colin Barker, Feb 23 2012
E.g.f.: (8*x^2 + 2)*exp(x) - 1. - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = G/2, where G is Catalan constant (A006752).
Product_{n>=1} (1 + 1/a(n)) = cosh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = cos(Pi/sqrt(8)). (End)

A016946 a(n) = (6*n+3)^2.

Original entry on oeis.org

9, 81, 225, 441, 729, 1089, 1521, 2025, 2601, 3249, 3969, 4761, 5625, 6561, 7569, 8649, 9801, 11025, 12321, 13689, 15129, 16641, 18225, 19881, 21609, 23409, 25281, 27225, 29241, 31329, 33489, 35721, 38025, 40401, 42849, 45369, 47961, 50625, 53361, 56169
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 36*A002378(n)+9. - Jean-Bernard François, Oct 12 2014
From Wesley Ivan Hurt, Oct 13 2014: (Start)
G.f.: 9*(1+6*x+x^2)/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
a(n) = A016945(n)^2 = A000290(A016945(n)). (End)
Sum_{n>=0} 1/a(n) = A086729. - Amiram Eldar, Nov 16 2020
a(n) = 9*A016754(n). - R. J. Mathar, Dec 11 2020
Sum_{n>=0} (-1)^n/a(n) = G/9, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 30 2022
E.g.f.: 9*exp(x)*(1 + 8*x + 4*x^2). - Stefano Spezia, Aug 19 2022

A173947 a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 16, 416, 34096, 5794624, 1680121936, 82501802464, 2065646660464, 1739147340740224, 210617970218777104, 288533264855755545376, 485294472126860897387056, 485518650207447822251456
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

For A173947/16 see A173949.
a(n+1)/A173948(n+1) =: r(n) = (Zeta(2, 1/4) - Zeta(2, n + 5/4)), the partial sum Sum_{k=0..n} 1/(k + 1/4)^2, n >= 0. The limit is Zeta(2, 1/4) = A282823 = 16*A222183. - Wolfdieter Lang, Nov 14 2017

Crossrefs

Cf. A006752, A120268, A173945, A173948 (denominators), A173949.

Programs

  • Magma
    [1] cat [Numerator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018
  • Maple
    r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
    seq(numer(simplify(r(n))), n=0..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[128*n*Sum[(1 + 4*k + 2*n) / ((1 + 4*k)^2*(1 + 4*k + 4*n)^2), {k, 0, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[16*Sum[1/(4*k + 1)^2, {k, 0, n - 1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
    

Formula

a(n) = numerator of 8*Catalan + Pi^2 - Zeta(2, (4 n + 1)/4), with the Catalan constant given in A006752.
a(n) = numerator(r(n)) with r(n) = Zeta(2, 1/4) - Zeta(2, n + 1/4), with the Hurwitz Zeta function (see the name). With Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2 this is the preceding formula, where Psi(1, z) is the Trigamma function. - Wolfdieter Lang, Nov 14 2017

Extensions

Name simplified and offset set to 0 by Peter Luschny, Nov 14 2017

A173948 a(n) = denominator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

1, 1, 25, 2025, 342225, 98903025, 4846248225, 121156205625, 101892368930625, 12328976640605625, 16878369020989100625, 28372538324282678150625, 28372538324282678150625, 1390254377889851229380625, 3905224547492592103330175625, 1409786061644825749302193400625, 5245813935380396613153461643725625
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

Presumably conjectures:
For n>=2 numbers in this sequence are divisible by 25.
For n>=7 numbers in this sequence are divisible by 25^2.

Crossrefs

Cf. A006752, A120268, A173945, A173947 (numerators).

Programs

  • Magma
    [1] cat [Denominator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018
  • Maple
    r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
    seq(denom(simplify(r(n))), n=0..16); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Denominator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Denominator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    for(n=0,20, print1(denominator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
    

Formula

a(n) = denominator of 8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4), with the Hurwitz Zeta function, and Catalan is given in A006752. [See the name with Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2, and the Trigamma function Psi(1, z).]

Extensions

Name simplified by Peter Luschny, Nov 14 2017
Formula reformulated. - Wolfdieter Lang, Nov 14 2017.

A065072 Number of ways to tile a square of side 2n by dominoes (rectangles of size 2 X 1 or 1 X 2) is 2^n * a(n)^2 (see A004003).

Original entry on oeis.org

1, 1, 3, 29, 901, 89893, 28793575, 29607089625, 97725875584681, 1035449388414303593, 35216739783694029601963, 3844747107219467355553841461, 1347358497824862447450096142795629, 1515633798331963142551890627742773295309
Offset: 0

Views

Author

Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br), Nov 08 2001

Keywords

Comments

A099390 is the main entry for this problem. - N. J. A. Sloane, Mar 15 2015

Examples

			G.f. = 1 + x + 3*x^2 + 29*x^3 + 901*x^4 + 89893*x^5 + 28793575*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{L = 2n}, Sqrt[Product[4 Cos[p Pi/(L+1)]^2 + 4 Cos[q Pi/(L+1)]^2, {p, 1, L/2}, {q, 1, L/2}]/2^(L/2)] // Round];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 11 2018 *)
    Table[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]^(1/4) / 2^(n/2), {n, 0, 15}] (* Vaclav Kotesovec, Dec 30 2020 *)

Formula

a(n) ~ exp(G*(2*n + 1)^2/(2*Pi)) / (2^((n-1)/2) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020, updated Dec 30 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 25 2015

A173949 a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4))/16, where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 1, 26, 2131, 362164, 105007621, 5156362654, 129102916279, 108696708796264, 13163623138673569, 18033329053484721586, 30330904507928806086691, 30344915637965488890716, 1487479897654682071525709
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

For the Catalan constant see A006752.
The denominators are given in A173948.
a(n+1)/A173948(n+1), for n>= 0, gives the partial sum Sum_{k=0..n} 1/(4*k + 1)^2. For {(4*k + 1)^2}A016814.%20The%20limit%20n%20-%3E%20infinity%20is%20given%20in%20A222183%20as%201.074833072...%20.%20-%20_Wolfdieter%20Lang">{k>=0} see A016814. The limit n -> infinity is given in A222183 as 1.074833072... . - _Wolfdieter Lang, Nov 14 2017

Examples

			The rationals r(n) begin: 0/1, 1/1, 26/25, 2131/2025, 362164/342225, 105007621/98903025, 5156362654/4846248225, 129102916279/121156205625, 108696708796264/101892368930625, 13163623138673569/12328976640605625, ... - _Wolfdieter Lang_, Nov 14 2017
		

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> (Psi(1, 1/4) - Zeta(0, 2, n+1/4))/16:
    seq(numer(simplify(r(n))), n=0..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[(8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4])/16]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of expression (8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4))/16.
a(n) = numerator(r(n)) with r(n) = (Zeta(2,1/4) - Zeta(2, n + 1/4))/16, with the Hurwitz Zeta function Z(2, k). With Zeta(2,1/4) = 8 Catalan + Pi^2 this is the preceding formula, and Zeta(2, n + 1/4) = Psi(1, n + 1/4) with the polygamma (trigamma) function Psi(1, k). - Wolfdieter Lang, Nov 14 2017

Extensions

Edited by Wolfdieter Lang, Nov 14 2017
Name changed according to a formula of Lang by Peter Luschny, Nov 14 2017

A173953 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 16, 928, 119344, 3078464, 1132669904, 606887707616, 49610806397296, 48006150564413056, 48265162121607952, 8192066749392160288, 15200753287254377716912, 33677610844789597790454208
Offset: 1

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

All numbers in this sequence are divisible by 16. For A173953/16 see A173955.
a(n+2)/A173954(n+2) is, for n >= 0, the partial sum Sum_{k=0..n} 1/(k + 3/4)^2 = 16*Sum_{k=0..n} 1/(4*k + 3)^2. The limit n -> infinity is given in A282824 as Zeta(2, 3/4) = Psi(1, 3/4) = Pi^2 - 8*Catalan, with the trigamma function Psi(1, z) and the Catalan constant A006752.

Examples

			The rationals r(n) = Zeta(2, 3/4) - Zeta(2, n-1/4) begin:  0/1, 16/9, 928/441, 119344/53361, 3078464/1334025, 1132669904/481583025, 606887707616/254757420225, 49610806397296/20635351038225, ... - _Wolfdieter Lang_, Nov 14 2017
		

Crossrefs

Denominators are in A173954.

Programs

  • Magma
    [0] cat [Numerator((&+[16/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4):
    seq(numer(simplify(r(n))), n=1..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4]]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[128*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[16*Sum[1/(4*k + 3)^2, {k, 0, n-1}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
  • PARI
    for(n=1,20, print1(numerator(16*sum(k=0,n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = Numerator of (Pi^2 - 8*Catalan - Zeta(2, (4 n - 1)/4)).
Numerator of 128*n*Sum_{k>=1} (4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2). - Vaclav Kotesovec, Nov 14 2017
Numerator of 16*Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. See a comment above. - Wolfdieter Lang, Nov 14 2017

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A173955 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4))/16 where Zeta(n, a) is the Hurwitz Zeta function.

Original entry on oeis.org

0, 1, 58, 7459, 192404, 70791869, 37930481726, 3100675399831, 3000384410275816, 3016572632600497, 512004171837010018, 950047080453398607307, 2104850677799349861903388, 609822785846772474028096357, 611130542819711220012487366
Offset: 1

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

The denominators are given in A173954.
a(n+2)/A173954(n+2) = (Zeta(2, 3/4) - Zeta(2, n + 7/4))/16 gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(4*n + 3). In the limit n -> infinity the series value is Zeta(2,3/4)/16, with the Hurwitz Zeta function, and it is given in A247037. - Wolfdieter Lang, Nov 15 2017

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[1/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> (Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4))/16:
    seq(numer(simplify(r(n))), n=1..15); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[(Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4])/16]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[8*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[Sum[1/(4*k + 3)^2, {k, 0, n-2}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=0,n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of r(n) with r(n) = (Pi^2 - 8*Catalan - Zeta(2, n - 1/4))/16, with the Hurwitz Zeta function Z(2, z), and the Catalan constant is given in A006752. With Zeta(2, 3/4) = Pi^2 - 8*Catalan this is the formula given in the name.
Numerator of Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. - G. C. Greubel, Aug 23 2018

Extensions

Numbers changed according to the old (or new) Mathematica program, and edited by Wolfdieter Lang, Nov 14 2017
Name simplified by Peter Luschny, Nov 14 2017
Previous Showing 31-40 of 245 results. Next