A073089 a(n) = (1/2)*(4n - 3 - Sum_{k=1..n} A007400(k)).
0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1
Offset: 1
Examples
From _Paul D. Hanna_, Oct 19 2012: (Start) Let F(x) = x + 1/x + 1/x^3 + 1/x^7 + 1/x^15 + 1/x^31 +...+ 1/x^(2^n-1) +... then F(x) = x + 1/(x + 1/(-x + 1/(-x + 1/(-x + 1/(x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(-x + 1/(-x + 1/(-x + 1/(x +...+ 1/((-1)^a(n)*x +...)))))))))))))))))))))), a continued fraction in which the partial quotients equal (-1)^a(n)*x. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Joerg Arndt, pdf rendering of the curve described in comment, alternate rendering of the curve.
- Index entries for characteristic functions
Programs
-
PARI
a(n)=if(n<2,0,if(n%8==1,a((n+1)/2),[1,-1,0,1,1,1,0,0,1,-1,0,1,1,0,0,0][(n%16)+1])) \\ Ralf Stephan
-
PARI
/* Using the Continued Fraction, Print 2^N terms of this sequence: */ {N=10;CF=contfrac(x+sum(n=1,N,1/x^(2^n-1)),2^N);for(n=1,2^N,print1((1-CF[n]/x)/2,", "))} \\ Paul D. Hanna, Oct 19 2012
-
PARI
a(n) = { if ( n<=1, return(0)); n-=1; my(v=2^valuation(n,2) ); return( (0==bitand(n, v<<1)) != (v%2) ); } \\ Joerg Arndt, Oct 28 2013
Formula
Recurrence: a(1) = a(4n+2) = a(8n+7) = a(16n+13) = 0, a(4n) = a(8n+3) = a(16n+5) = 1, a(8n+1) = a(4n+1).
G.f.: The following series has a simple continued fraction expansion:
x + Sum_{n>=1} 1/x^(2^n-1) = [x; x, -x, -x, -x, x, ..., (-1)^a(n)*x, ...]. - Paul D. Hanna, Oct 19 2012
a(n) = A014577(n-2) + A056594(n). Conjecture: a(n) = (1 + (-1)^A057661(n - 1))/2 for all n > 1. - Velin Yanev, Feb 01 2021
Comments