cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 102 results. Next

A115716 A divide-and-conquer sequence.

Original entry on oeis.org

1, 1, 3, 1, 3, 1, 11, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 683, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + x^3 + 3*x^4 + x^5 + 11*x^6 + x^7 + 3*x^8 + x^9 + ...
		

Crossrefs

Partial sums are A032925.
Row sums of number triangle A115717.
Bisection: A276390.
See A276391 for a closely related sequence.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          `if`(n::odd, 1, 4*a(n/2-1)-1))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 07 2016
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, If[OddQ[n], 1, 4*a[n/2-1]-1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 25 2017, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<1, n==0, n%2, 1, 4 * a(n/2-1) - 1)}; /* Michael Somos, Sep 07 2016 */

Formula

The g.f. G(x) satisfies G(x)-4*x^2*G(x^2)=(1+2*x)/(1+x). - Argument and offset corrected by Bill Gosper, Sep 07 2016
G.f.: 1/(1-x) + Sum_{k>=0} ((4^k-0^k)/2) *x^(2^(k+1)-2) /(1-x^(2^k)). - corrected by R. J. Mathar, Sep 07 2016
a(n)=A007583(A091090(n+1)-1). - Adapted to new offset by R. J. Mathar, Sep 07 2016
a(0) = 1, a(2*n + 1) = 1 for n>=0. a(2*n + 2) = 4*a(n) - 1 for n>=0. - Michael Somos, Sep 07 2016

A135351 a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.

Original entry on oeis.org

0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0

Views

Author

Miklos Kristof, Dec 07 2007

Keywords

Comments

Partial sums of A155980 for n > 2. - Klaus Purath, Jan 30 2021

Crossrefs

Cf. A007583, A062092, A087289, A020988 (even bisection), A163834 (odd bisection), A078008, A084247, A181565.

Programs

  • GAP
    List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
  • Magma
    a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
    
  • Maple
    G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
  • Mathematica
    Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
    LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
    
  • Sage
    [(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

G.f.: x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)).
E.g.f.: (exp(2*x) + 3*exp(x) - 7*exp(-x) + 3)/6.
From Paul Curtz, Dec 20 2020: (Start)
a(n) + (period 2 sequence: repeat [1, -2]) = A328284(n+2).
a(n+1) + (period 2 sequence: repeat [-2, 1]) = A001045(n).
a(n+1) + (period 2 sequence: repeat [-1, 0]) = A078008(n).
a(n+1) + (period 2 sequence : repeat [-3, 2]) = -(-1)^n*A084247(n).
a(n+4) = a(n+1) + 7*A001045(n).
a(n+4) + a(n+1) = A181565(n).
a(2*n+2) + a(2*n+3) = A087289(n) = 3*A007583(n).
a(2*n+1) = A163834(n), a(2*n+2) = A020988(n). (End)

Extensions

First part of definition corrected by Klaus Brockhaus, Dec 05 2009

A151917 a(0)=0, a(1)=1; for n>=2, a(n) = (2/3)*(Sum_{i=1..n-1} 3^wt(i)) + 1, where wt() = A000120().

Original entry on oeis.org

0, 1, 3, 5, 11, 13, 19, 25, 43, 45, 51, 57, 75, 81, 99, 117, 171, 173, 179, 185, 203, 209, 227, 245, 299, 305, 323, 341, 395, 413, 467, 521, 683, 685, 691, 697, 715, 721, 739, 757, 811, 817, 835, 853, 907, 925, 979, 1033, 1195, 1201, 1219
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

Keywords

Comments

Also, total number of "ON" cells at n-th stage in two of the four wedges of the "Ulam-Warburton" two-dimensional cellular automaton of A147562, but including the central ON cell. It appears that this is very close to A139250, the toothpick sequence. - Omar E. Pol, Feb 22 2015

Examples

			n=3: (2/3)*(3^1+3^1+3^2+3^1) + 1 = (2/3)*18 + 1 = 13.
		

Crossrefs

Programs

  • Mathematica
    Array[(2/3) Sum[3^(Total@ IntegerDigits[i, 2]), {i, # - 1}] + 1 &, 50] (* Michael De Vlieger, Nov 01 2022 *)
  • PARI
    a(n) = if (n<2, n, 1 + 2*sum(i=1,n-1, 3^hammingweight(i))/3); \\ Michel Marcus, Feb 22 2015

Formula

a(n) = A151914(n)/4.
a(n) = A079315(2n)/4.
For n>=2, a(n) = 2*A151920(n-2) + 1.
For n>=1, a(n) = (1 + A147562(n))/2. - Omar E. Pol, Mar 13 2011
a(2^k) = A007583(k), if k >= 0. - Omar E. Pol, Feb 22 2015

A160128 a(n) = number of grid points that are covered after (2^n)th stage of A139250.

Original entry on oeis.org

3, 7, 19, 63, 235, 919, 3651, 14575, 58267, 233031, 932083, 3728287, 14913099, 59652343, 238609315, 954437199, 3817748731, 15270994855, 61083979347, 244335917311, 977343669163, 3909374676567, 15637498706179
Offset: 0

Views

Author

Omar E. Pol, May 09 2009

Keywords

Crossrefs

Programs

  • PARI
    Vec((3 - 11*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^40)) \\ Colin Barker, May 13 2020

Formula

a(n) = A147614(A000079(n)).
a(n) = (1/9)*(2^(2*n+3) + 12*n + 19). [Nathaniel Johnston, Mar 29 2011]
It appears that a(n) = A139252(2^(n+1)). - Omar E. Pol, Sep 11 2012
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Paul Curtz, May 07 2020
G.f.: (3 - 11*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)). - Colin Barker, May 13 2020

Extensions

Terms after a(10) from Nathaniel Johnston, Mar 29 2011

A199210 a(n) = (11*4^n + 1)/3.

Original entry on oeis.org

4, 15, 59, 235, 939, 3755, 15019, 60075, 240299, 961195, 3844779, 15379115, 61516459, 246065835, 984263339, 3937053355, 15748213419, 62992853675, 251971414699, 1007885658795, 4031542635179, 16126170540715, 64504682162859
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Crossrefs

Sequences of the form (m*4^n + 1)/3: A007583 (m=2), A136412 (m=5), this sequence (m=11), A199210 (m=11), A206373 (m=14).

Programs

  • Magma
    [(11*4^n+1)/3: n in [0..30]];
    
  • Mathematica
    LinearRecurrence[{5,-4}, {4,15}, 31] (* G. C. Greubel, Jan 19 2023 *)
  • SageMath
    [(11*4^n+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023

Formula

a(n) = 4*a(n-1) - 1.
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: (4-5*x)/((1-x)*(1-4*x)). - Bruno Berselli, Nov 04 2011
E.g.f.: (1/3)*(11*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023

A097072 Expansion of (1 - 2*x + 2*x^2)/((1 - x^2)*(1 - 2*x)).

Original entry on oeis.org

1, 0, 3, 4, 11, 20, 43, 84, 171, 340, 683, 1364, 2731, 5460, 10923, 21844, 43691, 87380, 174763, 349524, 699051, 1398100, 2796203, 5592404, 11184811, 22369620, 44739243, 89478484, 178956971, 357913940, 715827883, 1431655764, 2863311531, 5726623060, 11453246123
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Crossrefs

Programs

  • Magma
    [(4*2^n - 3 + 5*(-1)^n)/6: n in [0..50]]; // G. C. Greubel, Oct 10 2017
  • Maple
    a:= n-> ceil(2*(2^n-1)/3)+(-1)^n:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 15 2023
  • Mathematica
    CoefficientList[Series[(1-2x+2x^2)/((1-x^2)(1-2x)),{x,0,50}],x]  (* Harvey P. Dale, Mar 09 2011 *)
    Table[2*2^n/3 - 1/2 + 5 (-1)^n/6, {n, 0, 32}] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    for(n=0,50, print1((4*2^n - 3 + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Oct 10 2017
    

Formula

a(n) = (4*2^n - 3 + 5*(-1)^n)/6.
a(n) = Sum_{k=0..n} (2^k - 1 + 0^k)(-1)^(n-k).
a(n) = A001045(n+1) - A000035(n).
a(n) = a(n-1) + 2*a(n-2) + 1, n > 1. - Gary Detlefs, Jun 20 2010
a(2*n) = A007583(n), a(2*n+1) = A080674(n), n >= 0. - Yosu Yurramendi, Feb 21 2017
a(n) = A000975(n) + (-1)^n. - Alois P. Heinz, Jun 15 2023

A175625 Numbers k such that gcd(k, 6) = 1, 2^(k-1) == 1 (mod k), and 2^(k-3) == 1 (mod (k-1)/2).

Original entry on oeis.org

7, 11, 23, 31, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 683, 719, 839, 863, 887, 983, 1019, 1123, 1187, 1283, 1291, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2543
Offset: 1

Views

Author

Alzhekeyev Ascar M, Jul 28 2010, Jul 30 2010

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, A001567. That subsequence begins with 536870911, 46912496118443, 192153584101141163, with no other composites below 2^64 (the first two were found by 'venco' from the dxdy.ru forum), and contains the terms of A303448 that are not multiples of 3. Correspondingly, composite terms include those of the form A007583(m) = (2^(2m+1) + 1)/3 for m in A303009. The only known composite member not of this form is a(1018243) = 536870911.
Intended as a pseudoprimality test; note that many primes do not pass the third condition either.
Conjecture: The prime values belong to A039787. - Bill McEachen, Dec 27 2023

Crossrefs

Programs

  • Mathematica
    Select[Array[(6 # + (-1)^# - 3)/2 &, 3000], And[PowerMod[2, (# - 1), #] == 1, PowerMod[2, (# - 3), (# - 1)/2] == 1] &] (* Michael De Vlieger, Dec 27 2023 *)
  • PARI
    isA175625(n) = gcd(n,6)==1 && Mod(2,n)^(n-1)==1 && Mod(2,n\2)^(n-3)==1

Extensions

Partially edited by N. J. A. Sloane, Jul 29 2010
Entry rewritten by Charles R Greathouse IV, Aug 04 2010
Comment and b-file from Charles R Greathouse IV, Sep 06 2010
Edited by Max Alekseyev, May 28 2014, Apr 24 2018

A213526 a(n) = 3*n AND n, where AND is the bitwise AND operator.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 5, 8, 9, 10, 1, 4, 5, 10, 13, 16, 17, 18, 17, 20, 21, 2, 5, 8, 9, 10, 17, 20, 21, 26, 29, 32, 33, 34, 33, 36, 37, 34, 37, 40, 41, 42, 1, 4, 5, 10, 13, 16, 17, 18, 17, 20, 21, 34, 37, 40, 41, 42, 49, 52, 53, 58, 61, 64, 65, 66, 65, 68
Offset: 0

Views

Author

Alex Ratushnyak, Jun 13 2012

Keywords

Comments

Indices of 1's: A007583(n),
indices of 2's: A047849(n+1),
indices of 4's: A039301(n+2),
indices of 5's: A153643(n+3),
indices of 8's: A155701(n+2),
indices of 9's: A155701(n+2)+1 = A163868(n+2),
indices of 10's: A153643(n+4)+3^((n+1) mod 2),
indices of 13's: A039301(n+3)+3,
indices of 16's: A039301(n+3)+4,
indices of 17's: 17, 19, 27, 49, 51, 91, 177, 179, 347, 689, 691, 1371, 2737, 2739, 5467, 10929, 10931, 21851, 43697, 43699, 87387, 174769, 174771, 349531, 699057, 699059, 1398107, 2796209, 2796211, 5592411, 11184817, 11184819, 22369627, 44739249, 44739251, 89478491, ...
indices of 18's: A039301(n+3)+6,
n's such that a(n)<3: A005578, except the first term.

Programs

  • Maple
    a:= proc(n) local i, k, m, r;
          k, m, r:= n, 3*n, 0;
          for i from 0 while (m>0 or k>0) do
            r:= r +2^i* irem(m, 2, 'm') *irem(k, 2, 'k')
          od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 22 2012
  • Mathematica
    Table[BitAnd[n, 3*n], {n, 0, 68}] (* Arkadiusz Wesolowski, Jun 23 2012 *)
  • PARI
    a(n)=bitand(n,3*n) \\ Charles R Greathouse IV, Feb 05 2013
  • Python
    for n in range(99):
        print(3*n & n, end=',')
    

A255138 a(n) = (1 + 2^n*(3 + 2*(-1)^n))/3.

Original entry on oeis.org

2, 1, 7, 3, 27, 11, 107, 43, 427, 171, 1707, 683, 6827, 2731, 27307, 10923, 109227, 43691, 436907, 174763, 1747627, 699051, 6990507, 2796203, 27962027, 11184811, 111848107, 44739243, 447392427, 178956971
Offset: 0

Views

Author

L. Edson Jeffery, May 04 2015

Keywords

Comments

Let N_1 be the set of odd natural numbers and v(y) the 2-adic valuation of y. Define the map F : N_1 -> N_1 by F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Let F^(k)(x) denote k-fold iteration of F, with recurrence F^(k)(x) = F(F^(k-1)(x)), k > 0, and initial condition F^(0)(x) = x. Then, for n>0, a(n) is the least m such that F^(n)(4*m-3) == 1 (mod 4). Cf. A257499.
Let k == 1 mod 4, and k(r) be the r-th iteration at which k appears in a Collatz sequence. When n >= 2 and k(r) == [2^(n+1) - a(n)] mod 2^(n+1), then n is the number of halving steps following k(r+1). For instance, since a(5) = 11, there are 5 halving steps following k(r+1) when k(r) == 53 mod 64, because 2^(5+1) = 64 and 64-11 = 53; e.g., k(r) = 117: 117 -> 352 -> 176 -> 88 -> 44 -> 22 -> 11. - Bob Selcoe, Feb 09 2017

Crossrefs

Programs

  • Magma
    [(1 + 2^n*(3 + 2*(-1)^n))/3: n in [0..50]]; // Wesley Ivan Hurt, Nov 05 2015
  • Maple
    A255138:=n->(1 + 2^n*(3 + 2*(-1)^n))/3: seq(A255138(n), n=0..50); # Wesley Ivan Hurt, Nov 05 2015
  • Mathematica
    a[n_] := (1 + 2^n*(3 + 2*(-1)^n))/3; Table[a[n], {n, 0, 29}]
    LinearRecurrence[{1,4,-4},{2,1,7},30] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    vector(30, n, n--; (1 + 2^n*(3 + 2*(-1)^n))/3) \\ Altug Alkan, Nov 05 2015
    

Formula

a(2*n) = A136412(n); a(2*n+1) = A007583(n).
G.f.: (2-x-2*x^2)/((x-1)*(2*x-1)*(2*x+1)). - R. J. Mathar, Jul 25 2015
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 05 2015
a(n) = 4*a(n-2) - 1. - Bob Selcoe, Feb 09 2017
a(n) = 2^(n+1) - A096773(n+1). - Ruud H.G. van Tol, Sep 04 2023

A277955 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 3, 7, 11, 23, 43, 87, 171, 343, 683, 1367, 2731, 5463, 10923, 21847, 43691, 87383, 174763, 349527, 699051, 1398103, 2796203, 5592407, 11184811, 22369623, 44739243, 89478487, 178956971, 357913943, 715827883, 1431655767, 2863311531, 5726623063
Offset: 0

Views

Author

Robert Price, Nov 05 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Essentially the same as A267052. - R. J. Mathar, Nov 09 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Magma
    I:=[1,3,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=14; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],2], {i,1,stages-1}]
    LinearRecurrence[{2, 1, -2}, {1, 3, 3}, 32] (* or *)
    CoefficientList[ Series[(1 + x - 4x^2)/(1 - 2x - x^2 + 2x^3), {x, 0, 31}], x] (* Robert G. Wilson v, Nov 05 2016 *)

Formula

G.f.: (1 + x - 4*x^2)/(1 - 2*x - x^2 + 2*x^3). - Robert G. Wilson v, Nov 05 2016
From Colin Barker, Nov 06 2016: (Start)
a(n) = (3 - 2*(-1)^n + 2^(1+n))/3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. (End)
From Paul Curtz, May 08 2024: (Start)
a(2*n) = A007583(n). a(2*n+1) = A163834(n+1).
a(n) = A001045(n+1) + A010673(n).
a(n) = a(n-1) + 2*A078008(n-1). (End)
Previous Showing 51-60 of 102 results. Next