A235136
a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0
G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
-
a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
-
{a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};
A347012
E.g.f.: exp(x) / (1 - 4 * x)^(1/4).
Original entry on oeis.org
1, 2, 8, 64, 800, 13376, 278272, 6914048, 199629824, 6566164480, 242327576576, 9915111636992, 445432721932288, 21795710738038784, 1153805878313615360, 65700181140859518976, 4004182878034473254912, 260071258357260225609728, 17932703649301871611346944
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 10 2021
-
nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]
A371026
Triangle read by rows: T(n, k) = 4^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/4, n).
Original entry on oeis.org
1, 0, 1, 0, 5, 2, 0, 45, 30, 6, 0, 585, 510, 180, 24, 0, 9945, 10350, 4950, 1200, 120, 0, 208845, 247590, 144900, 48600, 9000, 720, 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040, 0, 151412625, 216093150, 164872260, 80713080, 26334000, 5594400, 705600, 40320
Offset: 0
Triangle read by rows:
[0] 1;
[1] 0, 1;
[2] 0, 5, 2;
[3] 0, 45, 30, 6;
[4] 0, 585, 510, 180, 24;
[5] 0, 9945, 10350, 4950, 1200, 120;
[6] 0, 208845, 247590, 144900, 48600, 9000, 720;
[7] 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040;
-
A371026 := (n, k) -> local j; 4^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/4, n), j = 0..k): seq(seq(A371026(n, k), k = 0..n), n = 0..9);
-
from functools import cache
@cache
def T(n, k): # After Werner Schulte
if k == 0: return 0**n
if k == n: return n * T(n-1, n-1)
return k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k)
for n in range(8): print([T(n, k) for k in range(n + 1)])
# Peter Luschny, Mar 17 2024
A020042
a(n) = round( Gamma(n+1/4)/Gamma(1/4) ).
Original entry on oeis.org
1, 0, 0, 1, 2, 10, 51, 319, 2310, 19061, 176310, 1807181, 20330789, 249052162, 3299941145, 47024161317, 717118460090, 11653174976468, 201017268344078, 3668565147279424, 70619879085128903, 1430052551473860293
Offset: 0
-
[Round(Gamma(n+1/4)/Gamma(1/4)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
seq( round(pochhammer(1/4,n)), n=0..30); # G. C. Greubel, Dec 06 2019
-
Table[Round[Pochhammer[1/4,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
-
x=1/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
-
[round(rising_factorial(1/4,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019
A024383
a(n) = s(1)*s(2)*...*s(n)*(1/s(1) - 1/s(2) + ... + c/s(n)), where c = (-1)^(n+1) and s(k) = 4*k - 3 for k = 1, 2, 3, ....
Original entry on oeis.org
1, 4, 41, 488, 8881, 176556, 4622745, 128838480, 4403082465, 157917434580, 6659489632905, 292097166060600, 14653855170875025, 759940716395000700, 44202442040567948025, 2645857155729629066400, 175060715455871850866625
Offset: 1
-
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 4 else 4*a(n-1) + (4*n - 3)^2*a(n-2) end if; end:
seq(a(n), n = 0..20);
-
Table[Product[4*k - 3, {k, 1, n}] * Sum[(-1)^(k+1)/(4*k - 3), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
-
a(n) = prod(k=1, n, 4*k-3)*sum(k=1, n, (-1)^(k+1)/(4*k-3)); \\ Michel Marcus, Jul 06 2019
A081407
4th-order non-linear ("factorial") recursion: a(0)=a(1)=a(2)=a(3)=1, a(n) = (n+1)*a(n-4).
Original entry on oeis.org
1, 1, 1, 1, 5, 6, 7, 8, 45, 60, 77, 96, 585, 840, 1155, 1536, 9945, 15120, 21945, 30720, 208845, 332640, 504735, 737280, 5221125, 8648640, 13627845, 20643840, 151412625, 259459200, 422463195, 660602880, 4996616625, 8821612800
Offset: 0
Following sequences are interleaved: A007696: {5,45,585,..}; A000404: {6,60,840,..} A034176: {7,77,1155,..}; A034177: {8,96,1536,..}
-
a:= function(k)
if k<4 then return 1;
elif k<7 then return k+1;
else return (k+1)*a(k-4);
fi;
end;
List([0..35], n-> a(n) ); # G. C. Greubel, Aug 24 2019
-
a081407 n = a081408_list !! n
a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
-- Reinhard Zumkeller, Jan 05 2012
-
a:= func< n | n le 3 select 1 else n in [4..6] select n+1 else (n+1)*Self(n-3) >;
[a(n): n in [0..35]]; // G. C. Greubel, Aug 24 2019
-
f[n_]:= (n+1)*f[n-4]; f[0]=1; f[1]=1; f[2]=1; f[3]=1; Table[f[n], {n, 0, 40}]
nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,a(n+2)}; NestList[nxt,{3,1,1,1,1},40][[;;,2]] (* Harvey P. Dale, Jan 13 2025 *)
-
a(n) = if(n<4, 1, (n+1)*a(n-4) );
vector(35, n, a(n-1)) \\ G. C. Greubel, Aug 24 2019
-
def a(n):
if n<4: return 1
elif 4<= n <= 6: return n+1
else: return (n+1)*a(n-4)
[a(n) for n in (0..35)] # G. C. Greubel, Aug 24 2019
A091544
First column sequence of array A091746 ((6,2)-Stirling2).
Original entry on oeis.org
1, 30, 2700, 491400, 150368400, 69470200800, 45155630520000, 39285398552400000, 44078217175792800000, 61973973349164676800000, 106719182107261573449600000, 220908706962031457040672000000, 541226332056977069749646400000000, 1548989762347068373623487996800000000
Offset: 1
-
a[n_] := 2^(4*n-1) * Pochhammer[1/4, n] * Pochhammer[1/2, n]; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)
A123145
a(1) = 1, a(n) = a(n-1) if n == 1 (mod 4), otherwise a(n) = n * a(n-1) for n >= 2.
Original entry on oeis.org
1, 2, 6, 24, 24, 144, 1008, 8064, 8064, 80640, 887040, 10644480, 10644480, 149022720, 2235340800, 35765452800, 35765452800, 643778150400, 12231784857600, 244635697152000, 244635697152000, 5381985337344000, 123785662758912000, 2970855906213888000
Offset: 1
-
function a(n) // a = A123145
if n eq 1 then return 1;
elif (n mod 4) eq 1 then return a(n-1);
else return n*a(n-1);
end if;
end function;
[a(n): n in [1..40]]; // G. C. Greubel, Jul 16 2023
-
a:= proc(n) option remember; `if`(n=0, 1,
`if`(irem(n, 4)=1, 1, n)*a(n-1))
end:
seq(a(n), n=1..24); # Alois P. Heinz, Jul 16 2023
-
a[n_]:= a[n]= If[n==1, 1, If[Mod[n,4]==1, a[n-1], n*a[n-1]]];
Table[a[n], {n,30}]
-
def a(n): # A123145
if (n==1): return 1
elif (n%4==1): return a(n-1)
else: return n*a(n-1)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 16 2023
A153274
Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
Original entry on oeis.org
2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
-
Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
-
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
-
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
A254796
Denominators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))).
Original entry on oeis.org
1, 4, 25, 200, 2025, 24300, 342225, 5475600, 98903025, 1978060500, 43616234025, 1046789616600, 27260146265625, 763284095437500, 22925783009390625, 733625056300500000, 24966177697226390625, 898782397100150062500, 34178697267502928765625
Offset: 0
54/25 = 2.16, 441/200 = 2.205 etc approach 2.188..
-
I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 24 2015
-
a[0] := 1: a[1] := 4:
for n from 2 to 18 do a[n] := 4*a[n-1] + (2*n-1)^2*a[n-2] end do:
seq(a[n], n = 0 .. 18);
-
RecurrenceTable[{a[0] == 1, a[1] == 4, a[n] == 4 a[n - 1] + (2 n - 1)^2 a[n - 2]}, a, {n, 20}] (* Vincenzo Librandi, Feb 24 2015 *)
Comments