cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 84 results. Next

A235136 a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0

Views

Author

Michael Somos, Jan 03 2014

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};

Formula

Let b(n) = a(2*n - 2) / a(2*n + 1). Then b(-n) = b(n), 0 = b(n+1) * (b(n+1) + 2*b(n+2)) + b(n) * (2*b(n+1) - 5*b(n+2)) for all n in Z.
a(n-1) + a(n-2) = A196265(n) if n>1.
a(2*n) = A008545(n). a(2*n - 1) = A007696(n). a(n) = A007662(2*n - 1).
E.g.f. A(x) =: y satisfies 0 = y * 3 + y' * 2*x - y''.
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*(a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
Let b(n) = a(n - 2) / a(n + 1). Then b(-n) = (-1)^n * b(n), 0 = b(n) * (b(n+1) - 4*b(n+3)) + b(n+2) * (2*b(n+1) + b(n+3)) for all n in Z. - Michael Somos, Sep 13 2014
a(n) ~ c * sqrt(Pi) * (2*n)^(n/2+1/4) / exp(n/2), where c = 2/Gamma(1/4) if n is odd, and 1/Gamma(3/4) if n is even. - Amiram Eldar, Sep 01 2025

A347012 E.g.f.: exp(x) / (1 - 4 * x)^(1/4).

Original entry on oeis.org

1, 2, 8, 64, 800, 13376, 278272, 6914048, 199629824, 6566164480, 242327576576, 9915111636992, 445432721932288, 21795710738038784, 1153805878313615360, 65700181140859518976, 4004182878034473254912, 260071258357260225609728, 17932703649301871611346944
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Comments

Binomial transform of A007696.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
    a:= n-> add(binomial(n, k)*g(k), k=0..n):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
    Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A007696(k).
a(n) ~ n! * exp(1/4) * 4^n / (Gamma(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 14 2021

A371026 Triangle read by rows: T(n, k) = 4^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/4, n).

Original entry on oeis.org

1, 0, 1, 0, 5, 2, 0, 45, 30, 6, 0, 585, 510, 180, 24, 0, 9945, 10350, 4950, 1200, 120, 0, 208845, 247590, 144900, 48600, 9000, 720, 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040, 0, 151412625, 216093150, 164872260, 80713080, 26334000, 5594400, 705600, 40320
Offset: 0

Views

Author

Peter Luschny, Mar 08 2024

Keywords

Examples

			Triangle read by rows:
  [0] 1;
  [1] 0,       1;
  [2] 0,       5,       2;
  [3] 0,      45,      30,       6;
  [4] 0,     585,     510,     180,      24;
  [5] 0,    9945,   10350,    4950,    1200,    120;
  [6] 0,  208845,  247590,  144900,   48600,   9000,   720;
  [7] 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040;
		

Crossrefs

Cf. A000142 (main diagonal), A007696 (column 1), A371027 (row sums).
Cf. A371025.

Programs

  • Maple
    A371026 := (n, k) -> local j; 4^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/4, n), j = 0..k): seq(seq(A371026(n, k), k = 0..n), n = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n, k):   # After Werner Schulte
        if k == 0: return 0**n
        if k == n: return n * T(n-1, n-1)
        return k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k)
    for n in range(8): print([T(n, k) for k in range(n + 1)])
    # Peter Luschny, Mar 17 2024

Formula

T(n, k) = k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 17 2024

A020042 a(n) = round( Gamma(n+1/4)/Gamma(1/4) ).

Original entry on oeis.org

1, 0, 0, 1, 2, 10, 51, 319, 2310, 19061, 176310, 1807181, 20330789, 249052162, 3299941145, 47024161317, 717118460090, 11653174976468, 201017268344078, 3668565147279424, 70619879085128903, 1430052551473860293
Offset: 0

Views

Author

Keywords

Comments

Gamma(n+1/4)/Gamma(1/4) = 1, 1/4, 5/16, 45/64, 585/256, 9945/1024, 208845/4096, 5221125/16384, 151412625/65536, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n+1/4)/Gamma(1/4)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
    seq( round(pochhammer(1/4,n)), n=0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    Table[Round[Pochhammer[1/4,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
  • PARI
    x=1/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    [round(rising_factorial(1/4,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019

A024383 a(n) = s(1)*s(2)*...*s(n)*(1/s(1) - 1/s(2) + ... + c/s(n)), where c = (-1)^(n+1) and s(k) = 4*k - 3 for k = 1, 2, 3, ....

Original entry on oeis.org

1, 4, 41, 488, 8881, 176556, 4622745, 128838480, 4403082465, 157917434580, 6659489632905, 292097166060600, 14653855170875025, 759940716395000700, 44202442040567948025, 2645857155729629066400, 175060715455871850866625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 4 else 4*a(n-1) + (4*n - 3)^2*a(n-2) end if; end:
    seq(a(n), n = 0..20);
  • Mathematica
    Table[Product[4*k - 3, {k, 1, n}] * Sum[(-1)^(k+1)/(4*k - 3), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
  • PARI
    a(n) = prod(k=1, n, 4*k-3)*sum(k=1, n, (-1)^(k+1)/(4*k-3)); \\ Michel Marcus, Jul 06 2019

Formula

a(n) ~ (Pi^(3/2) + 2*sqrt(Pi)*log(1 + sqrt(2))) * 2^(2*n - 2) * n^(n - 1/4) / (Gamma(1/4) * exp(n)). - Vaclav Kotesovec, Jan 02 2020
From Peter Bala, Mar 21 2024: (Start)
a(n) = Product_{k = 0..n} (4*k + 1) * Sum_{k = 0..n} (-1)^k/(4*k + 1).
a(n) = 4*a(n-1) + (4*n - 3)^2*a(n-2) with a(0) = 1 and a(1) = 4.
b(n) := Product_{k = 0..n} (4*k + 1) = A007696(n+1) satisfies the same 3-term recurrence with b(0) = 1 and b(1) = 5, leading to the continued fraction expansion for the constant A181048 = Sum_{k >= 0} (-1)^k/(4*k + 1) = 1/(1 + 1^2/(4 + 5^2/(4 + 9^2/(4 + 13^2/(4 + ... ))))) due to Euler. (End)

Extensions

More terms from Sean A. Irvine, Jul 06 2019

A081407 4th-order non-linear ("factorial") recursion: a(0)=a(1)=a(2)=a(3)=1, a(n) = (n+1)*a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 5, 6, 7, 8, 45, 60, 77, 96, 585, 840, 1155, 1536, 9945, 15120, 21945, 30720, 208845, 332640, 504735, 737280, 5221125, 8648640, 13627845, 20643840, 151412625, 259459200, 422463195, 660602880, 4996616625, 8821612800
Offset: 0

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Examples

			Following sequences are interleaved: A007696: {5,45,585,..}; A000404: {6,60,840,..} A034176: {7,77,1155,..}; A034177: {8,96,1536,..}
		

Crossrefs

Programs

  • GAP
    a:= function(k)
        if k<4 then return 1;
        elif k<7 then return k+1;
        else return (k+1)*a(k-4);
        fi;
      end;
    List([0..35], n-> a(n) ); # G. C. Greubel, Aug 24 2019
  • Haskell
    a081407 n = a081408_list !! n
    a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Magma
    a:= func< n | n le 3 select 1 else n in [4..6] select n+1 else (n+1)*Self(n-3) >;
    [a(n): n in [0..35]]; // G. C. Greubel, Aug 24 2019
    
  • Mathematica
    f[n_]:= (n+1)*f[n-4]; f[0]=1; f[1]=1; f[2]=1; f[3]=1; Table[f[n], {n, 0, 40}]
    nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,a(n+2)}; NestList[nxt,{3,1,1,1,1},40][[;;,2]] (* Harvey P. Dale, Jan 13 2025 *)
  • PARI
    a(n) = if(n<4, 1, (n+1)*a(n-4) );
    vector(35, n, a(n-1)) \\ G. C. Greubel, Aug 24 2019
    
  • Sage
    def a(n):
        if n<4: return 1
        elif 4<= n <= 6: return n+1
        else: return (n+1)*a(n-4)
    [a(n) for n in (0..35)] # G. C. Greubel, Aug 24 2019
    

A091544 First column sequence of array A091746 ((6,2)-Stirling2).

Original entry on oeis.org

1, 30, 2700, 491400, 150368400, 69470200800, 45155630520000, 39285398552400000, 44078217175792800000, 61973973349164676800000, 106719182107261573449600000, 220908706962031457040672000000, 541226332056977069749646400000000, 1548989762347068373623487996800000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also fifth column (m=4) sequence of triangle A091543.

Crossrefs

Cf. A091535 (third column of A091543, first column of array A091534), A000407, A007696, A091746.

Programs

  • Mathematica
    a[n_] := 2^(4*n-1) * Pochhammer[1/4, n] * Pochhammer[1/2, n]; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = 2^(n-1)*Product_{j=0..n-1}((2*j+1)*(4*j+1)), n>=1. From eq.12 of the Blasiak et al. reference with r=6, s=2, k=1.
a(n) = (2^(4*n-1))*risefac(1/4, n)*risefac(1/2, n), n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac4(4*n-3)*fac4(4*n-2)/2, n>=1, with fac4(4*n-3) = A007696(n) and fac4(4*n-2)/2 = A000407(n+1) (quartic- or 4-factorials).
E.g.f.: (hypergeom([1/4, 1/2], [], 16*x)-1)/2.
a(n) = A091746(n, 2), n>=1.
a(n) ~ sqrt(Pi) * 2^(4*n) * n^(2*n-1/4) / (Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 30 2025

A123145 a(1) = 1, a(n) = a(n-1) if n == 1 (mod 4), otherwise a(n) = n * a(n-1) for n >= 2.

Original entry on oeis.org

1, 2, 6, 24, 24, 144, 1008, 8064, 8064, 80640, 887040, 10644480, 10644480, 149022720, 2235340800, 35765452800, 35765452800, 643778150400, 12231784857600, 244635697152000, 244635697152000, 5381985337344000, 123785662758912000, 2970855906213888000
Offset: 1

Views

Author

Roger L. Bagula, Oct 01 2006

Keywords

Comments

Terms which repeat appear to be denominators of g.f. 0F2(--; 1/2, 3/4; z^4/64), which begin 24, 8064, 10644480, 35765452800, ... - Benedict W. J. Irwin, Jun 15 2018

Crossrefs

Programs

  • Magma
    function a(n) // a = A123145
      if n eq 1 then return 1;
      elif (n mod 4) eq 1 then return a(n-1);
      else return n*a(n-1);
      end if;
    end function;
    [a(n): n in [1..40]]; // G. C. Greubel, Jul 16 2023
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          `if`(irem(n, 4)=1, 1, n)*a(n-1))
        end:
    seq(a(n), n=1..24);  # Alois P. Heinz, Jul 16 2023
  • Mathematica
    a[n_]:= a[n]= If[n==1, 1, If[Mod[n,4]==1, a[n-1], n*a[n-1]]];
    Table[a[n], {n,30}]
  • SageMath
    def a(n): # A123145
        if (n==1): return 1
        elif (n%4==1): return a(n-1)
        else: return n*a(n-1)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 16 2023

Formula

Conjecture: E.g.f.: E(x)=d(G(0))/dx where G(k) = 1 + x/(4*k+1 - x*(4*k+1)/(1 + x - x/(1 + x - x/(x + 1/G(k+1) )))), or shift on 1 left G(0); (continued fraction,5-step). - Sergei N. Gladkovskii, Nov 26 2012

Extensions

Edited by N. J. A. Sloane, Oct 04 2006
More terms from Bruno Berselli, Nov 27 2012

A153274 Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).

Original entry on oeis.org

2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

A Pochhammer function-based triangular sequence.
Row sums are: {2, 21, 409, 14650, 854776, 73920791, 8878927331, 1413788600036, 288152651134776, 73152069870215127, ...}.

Examples

			Triangle begins as:
      2;
      6,      15;
     24,     105,      280;
    120,     945,     3640,      9945;
    720,   10395,    58240,    208845,    576576;
   5040,  135135,  1106560,   5221125,  17873856,   49579075;
  40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
  • Magma
    [(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
    Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
  • PARI
    T(n, k) = prod(j=0, n, j*k+1);
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
    

Formula

T(n, k) = k^(n+1) * Pochmammer(1/k, n+1).
T(n, k) = Product_{j=0..n} (j*k + 1). - G. C. Greubel, Mar 05 2020

Extensions

Edited by G. C. Greubel, Mar 05 2020

A254796 Denominators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))).

Original entry on oeis.org

1, 4, 25, 200, 2025, 24300, 342225, 5475600, 98903025, 1978060500, 43616234025, 1046789616600, 27260146265625, 763284095437500, 22925783009390625, 733625056300500000, 24966177697226390625, 898782397100150062500, 34178697267502928765625
Offset: 0

Views

Author

Peter Bala, Feb 23 2015

Keywords

Comments

The generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))) represents the constant L^2/Pi = 2.188439... = A254794, where L is the lemniscate constant A062539. See A254795 for the numerators of the convergents of the continued fraction.

Examples

			54/25 = 2.16, 441/200 = 2.205 etc approach 2.188..
		

Crossrefs

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 24 2015
  • Maple
    a[0] := 1: a[1] := 4:
    for n from 2 to 18 do a[n] := 4*a[n-1] + (2*n-1)^2*a[n-2] end do:
    seq(a[n], n = 0 .. 18);
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 4, a[n] == 4 a[n - 1] + (2 n - 1)^2 a[n - 2]}, a, {n, 20}] (* Vincenzo Librandi, Feb 24 2015 *)

Formula

a(2*n) = A007696(n+1)^2 = ( Product {k = 0..n} 4*k + 1 )^2.
a(2*n-1) = 4*n*A007696(n)^2 = 4*n * ( Product {k = 0..n-1} 4*k + 1 )^2.
a(n) = 4*a(n-1) + (2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 4.
a(2*n+1) = 4*(n + 1)*a(2*n); a(2*n) = (4*n + 2)*a(2*n-1) + a(2*n-2).
Empirical e.g.f.: ((-Q(1/2, -3)-Q(-1/2, -3))*P(1/2, (2*x+3)/(2*x-1))+Q(1/2, (2*x+3)/(2*x-1))*(P(1/2, -3)+P(-1/2, -3)))/((1-2*x)^(3/2)*(-Q(-1/2, -3)*P(1/2, -3)+Q(1/2, -3)*P(-1/2, -3))) where P and Q are Legendre functions of the first and second kinds. - Robert Israel, Feb 24 2015
Previous Showing 61-70 of 84 results. Next