cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 71 results. Next

A118729 Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006

Keywords

Comments

The numbers in row r span the interval ]8*A000217(r-1), 8*A000217(r)].
The first difference between the entries in row r is r.
Partial sums of floor(n/8). - Philippe Deléham, Mar 26 2013
Apart from the initial zeros, the same as A008726. - Philippe Deléham, Mar 28 2013
a(n+7) is the number of key presses required to type a word of n letters, all different, on a keypad with 8 keys where 1 press of a key is some letter, 2 presses is some other letter, etc., and under an optimal mapping of letters to keys and presses (answering LeetCode problem 3014). - Christopher J. Thomas, Feb 16 2024

Examples

			The array starts, with row r=0, as
  r=0:   0  0  0  0  0  0  0  0;
  r=1:   1  2  3  4  5  6  7  8;
  r=2:  10 12 14 16 18 20 22 24;
  r=3:  27 30 33 36 39 42 45 48;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)

Formula

From Philippe Deléham, Mar 26 2013: (Start)
a(8k) = A001107(k).
a(8k+1) = A002939(k).
a(8k+2) = A033991(k).
a(8k+3) = A016742(k).
a(8k+4) = A007742(k).
a(8k+5) = A002943(k).
a(8k+6) = A033954(k).
a(8k+7) = A033996(k). (End)
G.f.: x^8/((1-x)^2*(1-x^8)). - Philippe Deléham, Mar 28 2013
a(n) = floor(n/8)*(n-3-4*floor(n/8)). - Ridouane Oudra, Jun 04 2019
a(n+7) = (1/2)*(n+(n mod 8))*(floor(n/8)+1). - Christopher J. Thomas, Feb 13 2024

Extensions

Redefined as a rectangular tabf array and description simplified by R. J. Mathar, Oct 20 2010

A054925 a(n) = ceiling(n*(n-1)/4).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 11, 14, 18, 23, 28, 33, 39, 46, 53, 60, 68, 77, 86, 95, 105, 116, 127, 138, 150, 163, 176, 189, 203, 218, 233, 248, 264, 281, 298, 315, 333, 352, 371, 390, 410, 431, 452, 473, 495, 518, 541, 564, 588, 613, 638, 663, 689, 716, 743, 770, 798
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

Number of edges in "median" graph - gives positions of largest entries in rows of table in A054924.
Form the clockwise spiral starting 0,1,2,....; then A054925(n+1) interleaves 2 horizontal (A033951, A033991) and 2 vertical (A007742, A054552) branches. A bisection is A014848. - Paul Barry, Oct 08 2007
Consider the standard 4-dimensional Euclidean lattice. We take 1 step along the positive x-axis, 2 along the positive y-axis, 3 along the positive z-axis, 4 along the positive t-axis, and then back round to the x-axis. This sequence gives the floor of the Euclidean distance to the origin after n steps. - Jon Perry, Apr 16 2013
Jon Perry's JavaScript code is explained by A238604. - Michael Somos, Mar 01 2014
Ceiling of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014
Ceiling of one-half of each triangular number. - Harvey P. Dale, Oct 03 2016
For n > 2, also the edge cover number of the (n-1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017
Conjecture: For n>11, there always exists a prime number p such that a(n)Raul Prisacariu, Sep 01 2024
For n = 1 up to at least n = 13, also the lower matching number of the triangular honeycomb bishop graph. - Eric W. Weisstein, Dec 13 2024
Conjecturally, apart from the first term, the sequence terms are the exponents in the expansion of Sum_{n >= 0} q^(3*n) * (Product_{k >= 2*n+1} 1 - q^k) = 1 - q - q^2 + q^3 + q^5 - q^8 - q^11 + + - - .... Cf. A039825. - Peter Bala, Apr 13 2025

Examples

			a(6) = 8; ceiling(6*(6-1)/4) = ceiling(30/4) = 8.
G.f. = x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 14*x^8 + 18*x^9 + 23*x^10 + ...
		

Crossrefs

Programs

  • JavaScript
    p=new Array(0,0,0,0);
    for (a=0;a<100;a++) {
    p[a%4]+=a;
    document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]+p[3]*p[3]))+", ");
    } /* Jon Perry, Apr 16 2013 */
    
  • Magma
    [ Ceiling(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Magma
    I:=[0,0,1,2,3]; [n le 5 select I[n] else 3*Self(n-1)-4*Self(n-2)+4*Self(n-3)-3*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jul 14 2015
  • Maple
    seq(ceil(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Ceiling[(n^2 - n)/4], {n, 0, 20}] (* Wesley Ivan Hurt, Nov 01 2013 *)
    LinearRecurrence[{3, -4, 4, -3, 1}, {0, 0, 1, 2, 3}, 60] (* Vincenzo Librandi, Jul 14 2015 *)
    Join[{0}, Ceiling[#/2] &/ @ Accumulate[Range[0, 60]]] (* Harvey P. Dale, Oct 03 2016 *)
    Ceiling[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Dec 13 2024 *)
    Table[Ceiling[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Dec 13 2024 *)
    Table[(1 + (n - 1) n - Cos[n Pi/2] - Sin[n Pi/2])/4, {n, 0, 20}] (* Eric W. Weisstein, Dec 13 2024 *)
    CoefficientList[Series[x^2 (-1 + x - x^2)/((-1 + x)^3 (1 + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 13 2024 *)
  • PARI
    {a(n) = ceil( n * (n-1)/4)}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [ceil(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
    

Formula

Euler transform of length 6 sequence [ 2, 0, 1, 1, 0, -1]. - Michael Somos, Sep 02 2006
From Michael Somos, Feb 11 2004: (Start)
G.f.: x^2 * (x^2 - x + 1) / ((1 - x)^3 * (1 + x^2)) = x^2 * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)).
a(1-n) = a(n).
A011848(n) = a(-n). (End)
From Michael Somos, Mar 01 2014: (Start)
a(n + 4) = a(n) + 2*n + 3.
a(n+1) = floor( sqrt( A238604(n))). (End)
a(n) = A011848(n) + A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014
Sum_{n>=2} 1/a(n) = 4 - Pi + 2*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(1/sqrt(2)+cosh(sqrt(7)*Pi/4))). - Amiram Eldar, Dec 23 2024

A033990 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative y-axis.

Original entry on oeis.org

0, 1, 1, 8, 3, 7, 6, 2, 1, 5, 1, 1, 6, 2, 2, 1, 3, 4, 0, 4, 5, 3, 6, 7, 0, 8, 9, 1, 4, 6, 1, 2, 7, 1, 1, 4, 4, 8, 1, 7, 4, 7, 2, 0, 8, 8, 2, 4, 4, 1, 2, 8, 4, 6, 3, 2, 7, 3, 3, 7, 3, 2, 4, 1, 2, 3, 4, 7, 5, 6, 5, 2, 0, 1, 5, 8, 9, 8, 6, 4, 1, 7, 6, 1, 7, 8, 7, 7, 5, 1, 8, 4, 7, 6, 9, 2, 2, 3, 9, 0, 1, 0, 1, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Consider array of digits 0_(1)23456789(1)0111213141516171(8)1920212223...; in this array add to n-th pointer 8*n+1 to get next pointer. E.g., n=1 so n+(8*1+1)=10 -> n=10 so n+(8*2+1)=27 -> n=27 so ... etc. - comment from Patrick De Geest.

Examples

			The spiral begins
                 2---3---2---4---2---5---2
                 |                       |
                 2   1---3---1---4---1   6
                 |   |               |   |
                 2   2   4---5---6   5   2
                 |   |   |       |   |   |
                 1   1   3   0   7   1   7
                 |   |   |   |   |   |   |
                 2   1   2---1   8   6   2
                 |   |           |   |   |
                 0   1---0---1---9   1   8
                 |                   |   |
                 2---9---1---8---1---7   2
                                         |
                             3---0---3---9
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading downwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033989. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-3*n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Patrick De Geest, Oct 15 1999
Edited by Charles R Greathouse IV, Nov 01 2009

A033953 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive x-axis.

Original entry on oeis.org

0, 7, 1, 7, 4, 2, 8, 1, 1, 3, 1, 2, 0, 2, 3, 1, 3, 4, 6, 5, 5, 5, 7, 7, 8, 8, 9, 6, 8, 1, 1, 1, 2, 3, 1, 8, 0, 6, 1, 7, 0, 9, 2, 8, 4, 3, 2, 1, 1, 7, 2, 6, 2, 1, 3, 3, 5, 5, 3, 2, 2, 0, 4, 3, 2, 5, 4, 6, 5, 0, 5, 1, 1, 6, 5, 8, 1, 2, 6, 7, 3, 8, 7, 8, 9, 5, 7, 1, 8, 2, 8, 6, 1, 9, 9, 3, 6, 7, 9, 0, 1, 4, 6, 1, 0
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading rightwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033988, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2 + 3*n - 1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A033571 a(n) = (2*n + 1)*(5*n + 1).

Original entry on oeis.org

1, 18, 55, 112, 189, 286, 403, 540, 697, 874, 1071, 1288, 1525, 1782, 2059, 2356, 2673, 3010, 3367, 3744, 4141, 4558, 4995, 5452, 5929, 6426, 6943, 7480, 8037, 8614, 9211, 9828, 10465, 11122, 11799, 12496, 13213, 13950, 14707, 15484, 16281, 17098, 17935, 18792, 19669, 20566, 21483
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This is one of the diagonals in the spiral. - Omar E. Pol, Sep 10 2011
Also sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is a line perpendicular to the main axis A195015 in the same spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Programs

Formula

a(n) = A153126(2*n) = A000566(2*n+1). - Reinhard Zumkeller, Dec 20 2008
From Reinhard Zumkeller, Mar 13 2009: (Start)
a(n) = A008596(n) + A158186(n), for n > 0.
a(n) = A010010(n) - A158186(n). (End)
a(n) = a(n-1) + 20*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 15*x + 4*x^2)/(1-x)^3.
E.g.f.: (1 + 17*x + 10*x^2)*exp(x). (End)
a(n) = A003154(n+1) + A007742(n). - Leo Tavares, Mar 27 2022
Sum_{n>=0} 1/a(n) = sqrt(1+2/sqrt(5))*Pi/6 + sqrt(5)*log(phi)/6 + 5*log(5)/12 - 2*log(2)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022

Extensions

Terms a(36) onward added by G. C. Greubel, Oct 12 2019

A113688 Isolated semiprimes in the semiprime square spiral.

Original entry on oeis.org

65, 74, 249, 295, 309, 355, 422, 511, 545, 667, 669, 758, 926, 943, 979, 998, 1099, 1167, 1186, 1322, 1457, 1469, 1561, 1585, 1658, 1711, 1774, 1779, 1835, 1891, 1959, 1961, 1963, 2021, 2038, 2066, 2155, 2186, 2191, 2206, 2271, 2329, 2342
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam's marking the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by marking the semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence lists the isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes. A113689 gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2.
The squares of twin primes occupy adjacent points along the southeast diagonal, so none are isolated. Thus the only isolated semiprimes in the spiral that are squares are the squares of "isolated primes" (A007510). The first square in this sequence is a(1473) = 66049 = 257^2. - Jon E. Schoenfield, Aug 12 2018

Examples

			Spiral example:
.
  17--16--15--14--13
   |               |
  18   5---4---3  12
   |   |       |   |
  19   6   1---2  11
   |   |           |
  20   7---8---9--10
   |
  21--22--23--24--25
.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 121 showing only semiprimes; the isolated semiprimes appear in parentheses:
.
    .---.---.---.---.---.--95--94--93---.--91
    |                                       |
    . (65)--.---.--62---.---.---.--58--57   .
    |   |                               |   |
    .   .   .---.--35--34--33---.---.   .   .
    |   |   |                       |   |   |
    .   .  38   .---.--15--14---.   .  55   .
    |   |   |   |               |   |   |   |
    .   .  39   .   .---4---.   .   .   .  87
    |   |   |   |   |       |   |   |   |   |
  106  69   .   .   6   .---.   .   .   .  86
    |   |   |   |   |           |   |   |   |
    .   .   .   .   .---.---9--10   .   .  85
    |   |   |   |                   |   |   |
    .   .   .  21--22---.---.--25--26  51   .
    |   |   |                           |   |
    .   .   .---.---.--46---.---.--49---.   .
    |   |                                   |
    .   .-(74)--.---.--77---.---.---.---.--82
    |
  111---.---.---.-115---.---.-118-119---.-121
.
(End)
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Cf. A115258 (isolated primes in Ulam's lattice).

Programs

  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; t = spiral@ 26 /. n_ /; PrimeOmega@ n != 2 -> 0; f@ t (* Michael De Vlieger, Dec 21 2015, Version 10 *)

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011

A171555 Numbers of the form prime(n)*(prime(n)-1)/4.

Original entry on oeis.org

5, 39, 68, 203, 333, 410, 689, 915, 1314, 1958, 2328, 2525, 2943, 3164, 4658, 5513, 6123, 7439, 8145, 9264, 9653, 13053, 13514, 14460, 16448, 18023, 19113, 19670, 21389, 24414, 25043, 28308, 30363, 31064, 34689, 37733, 39303, 40100, 41718, 44205, 46764, 50288
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 11 2009

Keywords

Comments

The halves of even numbers of the form p(p-1)/2 for p prime.
Sum of the quadratic residues of primes of the form 4k + 1. For example, a(3)=68 because 17 is the 3rd prime of the form 4k + 1 and the quadratic residues of 17 are 1, 4, 9, 16, 8, 2, 15, 13 which sum to 68. This sum is also the sum of the quadratic nonresidues. Cf. A230077. - Geoffrey Critzer, May 07 2015

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.21 p. 110.

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 (mod 4), p == 3 (mod 4), and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Mathematica
    Table[Table[Mod[a^2, p], {a, 1, (p - 1)/2}] // Total, {p,
    Select[Prime[Range[100]], Mod[#, 4] == 1 &]}] (* Geoffrey Critzer, May 07 2015 *)
    Select[(# (#-1))/4&/@Prime[Range[100]],IntegerQ] (* Harvey P. Dale, Dec 24 2022 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if ((p % 4)==1, print1(p*(p-1)/4, ", "))); \\ Michel Marcus, Mar 23 2016

Extensions

Corrected (16448 inserted, 25043 inserted) by R. J. Mathar, May 22 2010

A173511 a(n) = 4*n^2 + floor(n/2).

Original entry on oeis.org

0, 4, 17, 37, 66, 102, 147, 199, 260, 328, 405, 489, 582, 682, 791, 907, 1032, 1164, 1305, 1453, 1610, 1774, 1947, 2127, 2316, 2512, 2717, 2929, 3150, 3378, 3615, 3859, 4112, 4372, 4641, 4917, 5202, 5494, 5795, 6103, 6420, 6744, 7077, 7417, 7766, 8122
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Examples

			a(6) = 147; 4(6)^2 + floor(6/3) = 144 + 3 = 147.
		

Crossrefs

Programs

Formula

a(n) = floor((2*n + 1/8)^2).
a(n+1) - a(n) = A173512(n).
a(n) = A002943(n) - A007494(n) = A007742(n) - A110654(n).
a(2*n) = A157474(n) for n>0.
From - R. J. Mathar, Feb 21 2010: (Start)
a(n)= 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: -x*(4+9*x+3*x^2)/((1+x)*(x-1)^3). (End)
E.g.f.: (x*(8*x + 9)*cosh(x) + (8*x^2 + 9*x - 1)*sinh(x))/2. - Stefano Spezia, Apr 24 2024

A351846 Irregular triangle read by rows: T(n,k), n >= 0, k >= 0, in which n appears 4*n + 1 times in row n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Omar E. Pol, Feb 21 2022

Keywords

Comments

a(n) is the number of hexagonal numbers A000384 less than or equal to n, not counting 0 as hexagonal.
This sequence is related to hexagonal numbers as A003056 is related to triangular numbers (or generalized hexagonal numbers) A000217.

Examples

			Triangle begins:
  0;
  1, 1, 1, 1, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 2;
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3;
  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4;
  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5;
  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6;
  ...
		

Crossrefs

Row sums give A007742.
Row n has length A016813(n).
Column 0 gives A001477, the same as the right border.
Nonzero terms give the row lengths of the triangles A347263, A347529, A351819, A351824, A352269, A352499.

Programs

  • Mathematica
    Table[PadRight[{},4n+1,n],{n,0,7}]//Flatten (* Harvey P. Dale, Jun 04 2023 *)

Formula

a(n) = floor((sqrt(8*n + 1) + 1)/4). - Ridouane Oudra, Apr 09 2023

A113689 Number of semiprimes in clumps of size > 1 through n^2 in the semiprime spiral.

Original entry on oeis.org

0, 0, 2, 6, 9, 13, 17, 21, 23, 31, 37, 45, 54, 59, 72, 77, 83, 93, 104, 116, 125, 140, 150, 164, 180, 188, 203, 219, 236, 255, 272, 287, 301, 317, 334, 354, 378, 403, 419, 430, 450, 475, 498, 521, 542, 560, 588, 608, 626, 652, 677, 698
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam coloring in the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by coloring in all semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence, A113689, gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2, not looking past the square boundary. A113688 gives isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes.

Examples

			a(3) = 2 because there is one visible clump through 3^2 = 9, {4,6}, which two semiprimes are diagonally connected.
a(4) = 6 because there are 6 semiprimes in the 2 visible clumps through 4^2 = 16, {4, 6, 14, 15}, {9, 10}.
a(5) = 9 because there are 9 semiprimes in the 3 visible clumps through 5^2 = 25, {4, 6, 14, 15}, {9, 10, 25}, {21, 22}.
......................
... 17 16 15 14 13 ...
... 18  5  4  3 12 ...
... 19  6  1  2 11 ...
... 20  7  8  9 10 ...
... 21 22 23 24 25 ...
......................
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011
Previous Showing 41-50 of 71 results. Next