cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A115032 Expansion of (5-14*x+x^2)/((1-x)*(x^2-18*x+1)).

Original entry on oeis.org

5, 81, 1445, 25921, 465125, 8346321, 149768645, 2687489281, 48225038405, 865363202001, 15528312597605, 278644263554881, 5000068431390245, 89722587501469521, 1610006506595061125, 28890394531209630721, 518417095055178291845, 9302617316461999622481
Offset: 0

Views

Author

Creighton Dement, Feb 26 2006

Keywords

Comments

Relates squares of numerators and denominators of continued fraction convergents to sqrt(5).
Sequence is generated by the floretion A*B*C with A = + 'i - 'k + i' - k' - 'jj' - 'ij' - 'ji' - 'jk' - 'kj' ; B = - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' ; C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' (apart from a factor (-1)^n)
Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B*C].
The sequence a(n-1), n >= 0, with a(-1) = 1, is also the curvature of circles inscribed in a special way in the larger segment of a circle of radius 5/4 (in some units) cut by a chord of length 2. For the smaller segment, the analogous curvature sequence is given in A240926. For more details see comments on A240926. See also the illustration in the present sequence, and the proof of the coincidence of the curvatures with a(n-1) in part I of the W. Lang link. - Kival Ngaokrajang, Aug 23 2014

Examples

			G.f. = 5 + 81*x + 1445*x^2 + 25921*x^3 + 465125*x^4 + 8346321*x^5 + ...
		

Crossrefs

Programs

  • Maple
    seq((9*combinat:-fibonacci(6*(n+1)) - combinat:-fibonacci(6*n) + 8)/16, n = 0 .. 20); # Robert Israel, Aug 25 2014
  • Mathematica
    LinearRecurrence[{19,-19,1},{5,81,1445},30] (* Harvey P. Dale, Nov 14 2014 *)
    CoefficientList[Series[(5 - 14*x + x^2)/((1 - x)*(x^2 - 18*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    Vec((5-14*x+x^2)/((1-x)*(x^2-18*x+1)) + O(x^20)) \\ Michel Marcus, Aug 23 2014

Formula

sqrt(a(2*n)) = sqrt(5)*A007805(n) = sqrt(5)*Fibonacci(6*n+3)/2 = sqrt(5)*A001076(2*n+1); sqrt(a(2*n+1)) = A023039(2*n+1) = A001077(2*n).
From Wolfdieter Lang, Aug 22 2014: (Start)
O.g.f.: (5-14*x+x^2)/((1-x)*(x^2-18*x+1)) (see the name).
a(n) = (9*F(6*(n+1)) - F(6*n) + 8)/16, n >= 0 with F(n) = A000045(n) (Fibonacci). From the partial fraction decomposition of the o.g.f.: (1/2)*((9 - x)/(1 - 18*x + x^2) + 1/(1 - x)). For F(6*n)/8 see A049660(n). a(-1) = 1 with F(-6) = -F(6) = -8.
a(n) = (9*S(n, 18) - S(n-1, 18) + 1)/2, with the Chebyshev S-polynomials (see A049310). From A049660.
a(n) = (A023039(n+1) + 1)/2.
(End)
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - Colin Barker, Aug 23 2014
From Wolfdieter Lang, Aug 24 2014: (Start)
a(n) = 18*a(n-1) - a(n-2) - 8, n >= 1, a(-1) = 1, a(0) = 5. See the Chebyshev S-polynomial formula above.
The o.g.f. for the sequence a(n-1) with a(-1) = 1, n >= 0, [1, 5, 81, 1445, ..] is (1-14*x+5*x^2)/((1-x)*(1-18*x+x^2)).
(See the Colin Barker formula from Aug 04 2014 in the history of A240926.) (End)

Extensions

More terms from Michel Marcus, Aug 23 2014
Edited (comment by Kival Ngaokrajang rewritten, Chebyshev index link added) by Wolfdieter Lang, Aug 26 2014
Partially edited by Jon E. Schoenfield and N. J. A. Sloane, Mar 15 2024

A097843 First differences of Chebyshev polynomials S(n,123) = A049670(n+1) with Diophantine property.

Original entry on oeis.org

1, 122, 15005, 1845493, 226980634, 27916772489, 3433536035513, 422297015595610, 51939099382224517, 6388086926998019981, 785682752921374233146, 96632590522402032656977, 11885022951502528642575025, 1461761190444288621004071098, 179784741401695997854858170029
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(11*b(n))^2 - 5*(5*a(n))^2 = -4 with b(n)=A097842(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 125*y^2 = -4 are (11 = 11*1,1), (1364 = 11*124,122), (167761 = 11*15251,15005), (20633239 = 11*1875749,1845493), ...
		

Programs

  • GAP
    a:=[1,122];; for n in [3..20] do a[n]:=123*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019
  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-123*x+x^2) )); // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    LinearRecurrence[{123,-1}, {1,122}, 20] (* G. C. Greubel, Jan 14 2019 *)
  • PARI
    Vec((1-x)/(1-123*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    ((1-x)/(1-123*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 11*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-123*x+x^2).
a(n) = S(n, 123) - S(n-1, 123) = T(2*n+1, 5*sqrt(5)/2)/(5*sqrt(5)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 123*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=122. - Philippe Deléham, Nov 18 2008
a(n) = (F(10*(n+1)) - F(10*n))/F(10), with F=A000045 (Fibonacci). F(10*n)/F(10) = A049670. - Wolfdieter Lang, Oct 11 2012
a(n) = (1/5)*F(10*n + 5). Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/11^2. Compare with A001519 and A007805. - Peter Bala, Nov 29 2013
From Peter Bala, Mar 23 2015: (Start)
a(n) = A049666(2*n + 1).
a(n) = ( Fibonacci(10*n + 10 - 2*k) - Fibonacci(10*n + 2*k) )/( Fibonacci(10 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(10*n + 10 - 2*k - 1) + Fibonacci(10*n + 2*k + 1) )/( Fibonacci(10 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 122, 0, 15005, 0, 1845493, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -125, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

A153111 Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.

Original entry on oeis.org

1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 18 2008

Keywords

Comments

B is of the form B(i) = 26*B(i-1) - B(i-2) for B(0) = 1, B(1) = 25 (this sequence).
A is of the form A(i) = 26*A(i-1) - A(i-2) for A(0) = 1, A(1) = 27.
In general a Pell-like equation of the form 1 + X*A*A = (X + 1)*B*B has the solution A(i) = (4*X + 2)*A(i-1) - A(i-2), for A(0) = 1 and A(1) = (4*X + 3), and B(i) = (4*X + 2)*B(i-1) - B(i-2) for B(0) = 1 and B(1) = (4*X + 1).
Examples in the OEIS:
X = 1 gives A002315 for A(i) and A001653 for B(i);
X = 2 gives A054320 for A(i) and A072256 for B(i);
X = 3 gives A028230 for A(i) and A001570 for B(i);
X = 4 gives A049629 for A(i) and A007805 for B(i);
X = 5 gives A133283 for A(i) and A157014 for B(i);
X = 6 gives A157461 for A(i) and this sequence for B(i).
Positive values of x (or y) satisfying x^2 - 26*x*y + y^2 + 24 = 0. - Colin Barker, Feb 20 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
    LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
    

Formula

a(n) = 26*a(n-1) - a(n-2). - Colin Barker, Feb 20 2014
G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - Colin Barker, Feb 20 2014
a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - Bruno Berselli, Feb 25 2014
E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms from Philippe Deléham, Sep 19 2009; corrected by N. J. A. Sloane, Sep 20 2009
Additional term from Colin Barker, Feb 20 2014

A157459 Expansion of 72*x^2 / (1 - 323*x + 323*x^2 - x^3).

Original entry on oeis.org

0, 72, 23256, 7488432, 2411251920, 776415629880, 250003421569512, 80500325329753056, 25920854752758914592, 8346434730063040745640, 2687526062225546361181560, 865375045601895865259716752, 278648077157748243067267612656, 89723815469749332371794911558552
Offset: 1

Views

Author

Paul Weisenhorn, Mar 01 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n) + 1 = a(n)^2,
(A+1) * c(n) + 1 = b(n)^2; for details see comment in A157014.
A157459 is the c(n) sequence for A=4.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{323,-323,1},{0,72,23256},20] (* Harvey P. Dale, Feb 28 2021 *)
  • PARI
    concat(0, Vec(72*x^2/(1-323*x+323*x^2-x^3)+O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = -round((161+72*sqrt(5))^(-n)*(-1+(161+72*sqrt(5))^n)*(9+4*sqrt(5)+(-9+4*sqrt(5))*(161+72*sqrt(5))^n))/80 \\ Colin Barker, Jul 25 2016

Formula

4*a(n) + 1 = A007805(n-1)^2.
5*a(n) + 1 = A049629(n-1)^2.
G.f.: 72*x^2/(1 - 323*x + 323*x^2 - x^3).
c(1) = 0, c(2) = 72, c(3) = 323*c(2), c(n) = 323*(c(n-1) - c(n-2)) + c(n-3) for n>3.
a(n) = -((161+72*sqrt(5))^(-n)*(-1+(161+72*sqrt(5))^n)*(9+4*sqrt(5)+(-9+4*sqrt(5))*(161+72*sqrt(5))^n))/80. - Colin Barker, Jul 25 2016
a(n) = 72*A298271(n-1). - Greg Dresden, Dec 02 2021
a(n) = 2*A201003(n-1). - Amiram Eldar, Dec 01 2024

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A195614 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 2.

Original entry on oeis.org

8, 136, 2448, 43920, 788120, 14142232, 253772064, 4553754912, 81713816360, 1466294939560, 26311595095728, 472142416783536, 8472251907007928, 152028391909359160, 2728038802461456960, 48952670052396866112, 878420022140682133064
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 2; z = 32;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195614, A195615 *)
    Sqrt[a^2 + b^2] (* A007805 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
  • PARI
    Vec(8*x/((x+1)*(x^2-18*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015

Formula

From Colin Barker, Jun 04 2015: (Start)
G.f.: 8*x / ((x+1)*(x^2-18*x+1)).
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). (End)
a(n) = (-4*(-1)^n - (-2+sqrt(5))*(9+4*sqrt(5))^(-n) + (2+sqrt(5))*(9+4*sqrt(5))^n)/10. - Colin Barker, Mar 04 2016
a(n) = A014445(n) * A014445(n+1) / 2. - Diego Rattaggi, Jun 01 2020
a(n) is the numerator of continued fraction [4, ..., 4, 8, 4, ..., 4] with (n-1) 4's before and after the middle 8. - Greg Dresden and Hexuan Wang, Aug 30 2021

A195615 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2.

Original entry on oeis.org

15, 273, 4895, 87841, 1576239, 28284465, 507544127, 9107509825, 163427632719, 2932589879121, 52623190191455, 944284833567073, 16944503814015855, 304056783818718321, 5456077604922913919, 97905340104793732225, 1756840044281364266127, 31525215456959763058065
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195614 for Mathematica program.

Crossrefs

Programs

  • Magma
    [Fibonacci(3*n+1)*Fibonacci(3*n+2): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    LinearRecurrence[{17,17,-1}, {15,273,4895}, 40] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(x*(15+18*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^50)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    [fibonacci(3*n+1)*fibonacci(3*n+2) for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3).
G.f.: x*(15 + 18*x - x^2)/((1+x)*(1-18*x+x^2)). (End)
a(n) = ((-1)^n + (2+sqrt(5))*(9+4*sqrt(5))^n + (2-sqrt(5))*(9+4*sqrt(5))^(-n))/5. - Colin Barker, Mar 04 2016
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = Fibonacci(3*n+1)*Fibonacci(3*n+2).
a(n) = (1/5)*(4*A049629(n) + (-1)^n - 5*[n=0]). (End)

A107075 Centered square numbers that are also centered pentagonal numbers.

Original entry on oeis.org

1, 181, 58141, 18721081, 6028129801, 1941039074701, 625008553923781, 201250813324382641, 64802136881897286481, 20866086825157601864101, 6718815155563865902953901, 2163437614004739663149291881
Offset: 1

Views

Author

Richard Choulet, Aug 30 2007, Sep 20 2007

Keywords

Comments

The centered square numbers are n^2 + (n+1)^2 while the centered pentagonal numbers are (5*r^2 + 5*r + 2)/2. A number has both properties iff 5*(2*r+1)^2 = (4*n+2)^2 + 1. We solve the equation 5*Y^2 - 1 = X^2 whose solutions in positive integers are given by A075796 and A007805 respectively. The r values are 0,8,..., i.e., A053606. The n values define A119032.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([181,1,1]). Matrix([[323,1,0], [ -323,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{323,-323,1},{1,181,58141},20] (* Harvey P. Dale, Nov 15 2018 *)

Formula

G.f.: (z*(1-142*z+z^2))/((1-z)*(1-322*z+z^2)).
a(n+2) = 322*a(n+1)-a(n)-140 with a(1)=1 and a(2)=181.
a(n+1) = 161*a(n)-70+18*(80*a(n)^2-70*a(n)+15)^0.5.
a(n) = (14+(9-4*sqrt(5))^(2*n-1)+(9+4*sqrt(5))^(2*n-1))/32. - Gerry Martens, Jun 06 2015

Extensions

More terms from Alois P. Heinz, Aug 14 2008

A214995 Power ceiling-floor sequence of (golden ratio)^6.

Original entry on oeis.org

18, 322, 5779, 103699, 1860804, 33390772, 599173093, 10751724901, 192931875126, 3462022027366, 62123464617463, 1114760341086967, 20003562674947944, 358949367807976024, 6441085057868620489, 115580581673827192777, 2074009385071020849498
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2012

Keywords

Comments

See A214992 for a discussion of power ceiling-floor sequence and the power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^6, and the limit p3(r) = 17.94722275971790615684809...

Examples

			a(0) = ceiling(r) = [17.9] = 18 , where r=(1+sqrt(5))^6;
a(1) = floor(18*r) = 322; a(2) = ceiling(322*r ) = 5779.
		

Crossrefs

Programs

  • Mathematica
    x = GoldenRatio^6; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A007805 *)
    Table[p2[n], {n, 0, z}]  (* A156085 *)
    Table[p3[n], {n, 0, z}]  (* A214995 *)
    Table[p4[n], {n, 0, z}]  (* A049660 *)
    Table[p4[n] - p1[n], {n, 0, z}]  (* A049660 *)
    Table[p3[n] - p2[n], {n, 0, z}]  (* A099279 *)
    LinearRecurrence[{17,17,-1},{18,322,5779},30] (* Harvey P. Dale, Feb 25 2013 *)
  • PARI
    Vec((18+16*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^20)) \\ Colin Barker, Mar 04 2016

Formula

a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x=((1+sqrt(5))/2)^6 and a(0) = ceiling(x).
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3).
G.f.: (18 + 16*x - x^2)/((1 + x)*(1 - 18*x + x^2)).
a(n) = (4*(-1)^n+(718-321*sqrt(5))*(9+4*sqrt(5))^(-n)+(9+4*sqrt(5))^n*(718+321*sqrt(5)))/80. - Colin Barker, Mar 04 2016
E.g.f.: exp(-x)*(2 + exp(10*x)*(718*cosh(4*sqrt(5)*x) + 321*sqrt(5)*sinh(4*sqrt(5)*x)))/40. - Stefano Spezia, Oct 28 2024

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.

A305315 a(n) = sqrt(5*b(n)^2 - 4), with b(n) = A134493(n) = Fibonacci(6*n+1), n >= 0.

Original entry on oeis.org

1, 29, 521, 9349, 167761, 3010349, 54018521, 969323029, 17393796001, 312119004989, 5600748293801, 100501350283429, 1803423556807921, 32361122672259149, 580696784543856761, 10420180999117162549, 186982561199565069121, 3355265920593054081629, 60207804009475408400201, 1080385206249964297121989
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a1(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b1(n) = Fibonacci(6*n+1) = A134493(n). These solutions are obtained from the fundamental positive solution [1, 1] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) with determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [11,5] and is given by [a5(n), b5(n)], with a5(n) = A305316(n) and b5(n) = A134497(n) = F(6*n+5), with the Fibonacci numbers F = A000045.
The remaining positive solutions are improper and are obtained by application of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = 4*A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
Via the Cayley-Hamilton theorem the powers of the automorphic matrix A are: A^n = matrix([S(n) - 9*S(n-1), 20*S(n-1)], [4*S(n-1), S(n) - 9*S(n-1)]) with the Chebyshev polynomials S(n-1) = S(n-1, x=18) = A049660(n), n >= 0.
This shows that ordered Markoff (Markov) triples [1, y, m], with 1 <= y <= m, have for m from the union of sets {m1(k)}{k>=0} U {m5(k)}{k>=0) U {m3(k)}_{k>=0)}, with mj(k) = F(6*k+j), for j = 1, 5, and 3, the unique solutions yj(k) = (3*F(6*k+j) - aj(k))/2 < mj(k), namely y1(k) = F(6*k-1) = A134497(k-1) with F(-1) = 1, y5(k) = F(6*k+3) = A134495(k) and y3(k) = F(6*k+1) = A134493. The solutions with the + sign are excluded because they are > mj(k). This trisection of the odd-indexed Fibonacci numbers as m numbers shows again the well known fact that each of them appears as largest member in a Markoff triple if the smallest member is x = 1. The positions of the odd-indexed Fibonacci numbers in the Markoff sequence A002559 are given in A158381. The conjecture in this case is that the odd-indexed Fibonacci numbers appear as largest numbers only in the ordered Markov triples with x = 1. See, e.g., the Aigner reference for the general Frobenius-Markoff conjecture.
Also Lucas numbers that are congruent to 1 mod 4. - Fred Patrick Doty, Aug 03 2020

Examples

			The solutions of the first class of positive proper solutions [a1(n), b1(n)] of the Pell equation  a^2 - 5*b^2 = -4  begin: [1, 1], [29, 13], [521, 233], [9349, 4181], [167761, 75025], [3010349, 1346269], [54018521, 24157817], ...
The solutions of the second class of positive proper solutions [a5(n), b5(n)] begin: [11, 5], [199, 89], [3571, 1597], [64079, 28657], [1149851, 514229], [20633239, 9227465], [370248451, 165580141], ...
The solutions of the class of improper positive solutions [a3(n), b3(n)] begin: [4, 2], [76, 34], [1364, 610], [24476, 10946], [439204, 196418], [7881196, 3524578], [141422324, 63245986], ...
		

References

  • Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{1, 1}, {1, 3}, 115], Mod[#, 4] == 1 &] (* Fred Patrick Doty, Aug 03 2020 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+11*x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018

Formula

a(n) = sqrt(5*(F(6*n+1))^2 - 4), with F(6*n+1) = A134493(n), n >= 0.
a(n) = S(n, 18) + 11*S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(0)=1 and a(-1) = -11.
G.f.: (1 + 11*x)/(1 - 18*x + x^2).
a(n) = 2*sinh((6*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
Previous Showing 21-30 of 36 results. Next