A112340
Triangle read by rows of numbers b_{n,k}, n>=1, 1<=k<=n such that Product_{n,k} 1/(1-q^n t^k)^{b_{n,k}} = 1 + Sum_{i,j>=1} S_{i,j} q^i t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 13, 16, 4, 0, 1, 28, 67, 34, 5, 0, 1, 60, 249, 229, 65, 6, 0, 1, 123, 853, 1265, 609, 107, 7, 0, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 0, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 0, 1, 1018, 27503, 131402, 199766, 124859, 36252
Offset: 1
There are 6 set partitions of size 4 and length 3, {12|3|4}, {13|2|4}, {14|2|3}, {1|23|4}, {1|24|3}, {1|2|34} and the sequences the correspond to are ({12},{1},{1}), ({13|2}, {1}), ({14|2|3}), ({1},{12},{1}), ({1},{13|2}), ({1},{1},{12}). Now there are three {({12},{1},{1}), ({1},{12},{1}), ({1},{1},{12})} that are rotations of each other and ({1}, {1}, {12}) is the smallest of these, {({13|2}, {1}), ({1},{13|2})} are rotations of each other and ({1},{13|2}) is the smallest and ({14|2|3}) is atomic and all atomic s.p. are Lyndon. Hence {1|2|34}, {1|24|3}, {14|2|3} are Lyndon and a(4,3) = 3
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 5, 3, 0;
1, 13, 16, 4, 0;
1, 28, 67, 34, 5, 0;
...
- N. Bergeron, M. Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree, arXiv:math/0509265 [math.CO], 2005.
- M. Rosas and B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, 358 (2006), no. 1, 215-232.
- M. C. Wolf, Symmetric functions for non-commutative elements, Duke Math. J., 2 (1936), 626-637.
-
EULERitable:=proc(tbl) local ser,out,i,j,tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser,q,i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp,t,j)),k),k=0..nops(tbl)/i), j = 1..degree(tmp,t))); ser:=subs({seq(q^j=0,j=nops(tbl)+1..degree(ser,q))},ser); out:=[op(out),[seq(abs(coeff(tmp,t,j)), j=1..degree(tmp,t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n,k),k=1..n)],n=1..10)]);
-
nmax = 11; b[n_, k_] /; k < 1 || k > n = 0;
coes[m_] := Product[1/(1 - q^n t^k)^b[n, k], {n, 1, m}, {k, 1, m}] - 1 - Sum[ StirlingS2[i, j] q^i t^j, {i, 1, m}, {j, 1, m}] + O[t]^m + O[q]^m // Normal // CoefficientList[#, {t, q}]&;
sol[1] = {b[1, 1] -> 1};
Do[sol[m] = Solve[Thread[(coes[m] /. sol[m - 1]) == 0]], {m, 2, nmax + 1}];
bb = Flatten[Table[sol[m], {m, 1, nmax + 1}]];
Table[b[n, k] /. bb, {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 11 2017 *)
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 15, 14, 7, 1, 52, 51, 36, 11, 1, 203, 202, 171, 81, 16, 1, 877, 876, 813, 512, 162, 22, 1, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115974, 115463
Offset: 1
First few rows of the triangle are
1;
2, 1;
5, 4, 1;
15, 14, 7, 1;
52, 51, 36, 11, 1;
203, 202, 171, 81, 16, 1;
877, 876, 813, 512, 162, 22, 1;
...
-
A137650_row := proc(n) local k,i;
add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1),k=0..n-1);
seq(coeff(%,x,k),k=0..n-1) end:
seq(print(A137650_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
-
row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest;
Array[row, 10] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
A039812
Triangle read by rows: matrix 4th power of the Stirling2 triangle A008277.
Original entry on oeis.org
1, 4, 1, 22, 12, 1, 154, 136, 24, 1, 1304, 1650, 460, 40, 1, 12915, 21904, 8550, 1160, 60, 1, 146115, 318521, 162904, 30590, 2450, 84, 1, 1855570, 5051988, 3246068, 789824, 86940, 4592, 112, 1, 26097835, 86910426, 68151304, 20606796, 2919504, 210924, 7896, 144, 1
Offset: 1
Triangle begins
1;
4, 1;
22, 12, 1;
154, 136, 24, 1;
1304, 1650, 460, 40, 1;
12915, 21904, 8550, 1160, 60, 1;
...
-
Flatten[Table[SeriesCoefficient[(Exp[Exp[Exp[Exp[x]-1]-1]-1]-1)^k, {x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A049434
Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.
Original entry on oeis.org
1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053, 20415995028, 189036065010, 1709751003480, 15170932662679, 132511015347084, 1142399079991620, 9741955019900400, 82318282158320505, 690223721118368580, 5749622251945664950
Offset: 8
-
lst={};Do[f=StirlingS2[n, 8];AppendTo[lst, f], {n, 8, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
A049435
Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.
Original entry on oeis.org
1, 55, 1705, 39325, 752752, 12662650, 193754990, 2758334150, 37112163803, 477297033785, 5917584964655, 71187132291275, 835143799377954, 9593401297313460, 108254081784931500, 1203163392175387500, 13199555372846848005, 143197070509423605675
Offset: 10
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
-
lst={};Do[f=StirlingS2[n, 10];AppendTo[lst, f], {n, 10, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x) (1 - 10 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
StirlingS2[Range[10,35],10] (* Harvey P. Dale, Nov 07 2020 *)
A049447
Stirling numbers of second kind: 9th column of Stirling2 triangle A008277.
Original entry on oeis.org
1, 45, 1155, 22275, 359502, 5135130, 67128490, 820784250, 9528822303, 106175395755, 1144614626805, 12011282644725, 123272476465204, 1241963303533920, 12320068811796900, 120622574326072500, 1167921451092973005, 11201516780955125625, 106563273280541795575
Offset: 9
-
lst={};Do[f=StirlingS2[n, 9];AppendTo[lst, f], {n, 9, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
StirlingS2[Range[9,30],9] (* Harvey P. Dale, Dec 12 2022 *)
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 15, 22, 9, 1, 52, 99, 61, 14, 1, 203, 471, 385, 135, 20, 1, 877, 2386, 2416, 1140, 260, 27, 1, 4140, 12867, 15470, 9156, 2835, 455, 35, 1, 21147, 73681, 102215, 72590, 28441, 6230, 742, 44, 1
Offset: 1
First few rows of the triangle:
1;
2, 1;
5, 5, 1;
15, 22, 9, 1;
52, 99, 61, 14, 1;
203, 471, 385, 135, 20, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 16.
-
T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, k-1), j=k..n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 03 2019
-
Table[Sum[StirlingS2[n, j]*Binomial[j - 1, k - 1], {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Aug 31 2023 *)
A274712
a(n) = A008277(3*n-1,n) / (n*(n+1)/2) for n>=1, where A008277 are the Stirling numbers of the second kind.
Original entry on oeis.org
1, 5, 161, 14575, 2671669, 833607138, 397984073059, 270609861663900, 248922595132336125, 298037055910658382175, 450755158919281716609746, 840770855566250627155136090, 1896671776639253430025972662743, 5091278095597325836977485757711800, 16040729445423172146341201903726496024, 58625927208516621021861960954787323034320, 246047331971247756894582227572712664877434765, 1175344062721738572130662103242054758238706829325
Offset: 1
-
{a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1) / (n*(n+1)/2)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = abs( stirling(3*n-1, n, 2) / (n*(n+1)/2) )}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1)) / (n*(n+1)/2)}
for(n=1, 20, print1(a(n), ", "))
A055896
Exponential transform of Stirling2 triangle A008277.
Original entry on oeis.org
1, 1, 2, 1, 6, 5, 1, 14, 30, 15, 1, 30, 125, 150, 52, 1, 62, 450, 975, 780, 203, 1, 126, 1505, 5250, 7280, 4263, 877, 1, 254, 4830, 25515, 54600, 53998, 24556, 4140, 1, 510, 15125, 116550, 361452, 537138, 405174, 149040, 21147, 1, 1022, 46650
Offset: 1
Triangle begins
1;
1, 2;
1, 6, 5;
1, 14, 30, 15;
1, 30, 125, 150, 52; ...
-
nn=8; a=Exp[x]-1; Drop[Map[Select[#, #>0&]&, Range[0,nn]! CoefficientList[Series[Exp[Exp[y a]-1], {x,0,nn}], {x,y}]], 1]//Grid (* Geoffrey Critzer, Sep 22 2013 *)
A061113
Concatenation of numbers in n-th row of triangle of Stirling numbers of second kind (A008277).
Original entry on oeis.org
1, 11, 131, 1761, 11525101, 1319065151, 163301350140211, 112796617011050266281, 12553025777069512646462361, 151193303410542525228275880750451
Offset: 1
- Amarnath Murthy, A general result on the Smarandache Star function, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- Amarnath Murthy, Properties of Smarandache Star Triangle, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
-
with(combinat, stirling2): for n from 1 to 15 do for k from 1 to n do printf(`%d`, stirling2(n,k)) od: printf(`,`): od:
Comments