cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 141 results. Next

A249938 E.g.f.: Sum_{n>=0} exp(n^2*x) / 2^(n+1).

Original entry on oeis.org

1, 3, 75, 4683, 545835, 102247563, 28091567595, 10641342970443, 5315654681981355, 3385534663256845323, 2677687796244384203115, 2574844419803190384544203, 2958279121074145472650648875, 4002225759844168492486127539083, 6297562064950066033518373935334635, 11403568794011880483742464196184901963
Offset: 0

Views

Author

Paul D. Hanna, Nov 20 2014

Keywords

Comments

a(n) == 3 (mod 72) for n>0.
Conjectures from Federico Provvedi, Nov 07 2020: (Start)
For n>1, a(n+1) - a(n) == 0 (mod m) if and only if m divides 288.
This sequence is a periodic sequence modulo m, and if m is the k-th prime, the periods of {a(n)} over k-th prime is the sequence of the number of nonzero quadratic residues modulo k-th prime, for all k>0.
Example: k=9, m = prime(9) = 23, for n>0, {a(n) mod 23} generates a period of 11 elements {3, 6, 14, 22, 5, 3, 10, 2, 4, 5, 0}, hence A130290(9) = 11
(End)

Examples

			E.g.f.: A(x) = 1 + 3*x + 75*x^2/2! + 4683*x^3/3! + 545835*x^4/4! +...
where the e.g.f. equals the infinite series:
A(x) = 1/2 + exp(x)/2^2 + exp(4*x)/2^3 + exp(9*x)/2^4 + exp(16*x)/2^5 + exp(25*x)/2^6 + exp(36*x)/2^7 + exp(49*x)/2^8 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k! * StirlingS2[2*n, k],{k,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 04 2015 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; a[n_] := Fubini[2n, 1]; a[0] = 1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 30 2016 *)
    Table[-PolyLog[-2*n, 2] / 2, {n, 0, 48}] (* Federico Provvedi, Nov 07 2020 *)
    HurwitzLerchPhi[1/2, -2*Range[0,48], 0] / 2 (* Federico Provvedi, Nov 11 2020 *)
    -HurwitzLerchPhi[2, -2*Range[0, 48], 1] (*Federico Provvedi,Nov 11 2020*)
  • PARI
    /* E.g.f.: Sum_{n>=0} exp(n^2*x)/2^(n+1) */
    \p100 \\ set precision
    {a(n) = round( n!*polcoeff(sum(m=0, 600, exp(m^2*x +x*O(x^n))/2^(m+1)*1.), n) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: (2 - cosh(x)) / (5 - 4*cosh(x)): */
    {a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( (2 - cosh(X)) / (5 - 4*cosh(X)) , 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = sum(k=0, 2*n, k! * Stirling2(2*n, k) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: (2 - cosh(x)) / (5 - 4*cosh(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.
a(n) = Sum_{k=0..2*n} k! * Stirling2(2*n, k) for n>=0.
a(n) = A000670(2*n), where A000670 is the Fubini numbers.
a(n) ~ (2*n)! / (2 * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = Sum_{p=1..k, q=1..k} Stirling2(k,p)*Stirling2(k,q)*p!*q!*A008288(p, q) for n>1, where A008288 are the Delannoy numbers. See Chen link. - Michel Marcus, Apr 20 2017
a(n) = Sum_{k>=0} k^(2*n) / 2^(k + 1). - Ilya Gutkovskiy, Dec 19 2019
a(n) = -Polylog(-2*n, 2) / 2. - Federico Provvedi, Nov 07 2020
a(n) = Phi(1/2, -2*n, 0), where Phi(z,s,a) is the Hurwitz-Lerch Zeta transcendental function. - Federico Provvedi, Nov 11 2020

A001848 Crystal ball sequence for 6-dimensional cubic lattice.

Original entry on oeis.org

1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, 88043969
Offset: 0

Views

Author

Keywords

Comments

Number of nodes of degree 12 in virtual, optimal chordal graphs of diameter d(G)=n. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
Equals binomial transform of [1, 12, 60, 160, 240, 192, 64, 0, 0, 0, ...] where (1, 12, 60, 160, 240, 192, 64) = row 6 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^6 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 6 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 6 of A008288.

Programs

  • Maple
    for n from 1 to k do eval(4/45*n^6+4/15*n^5+14/9*n^4+8/3*n^3+196/45*n^2+46/15*n+1); od;
    A001848:=-(z+1)**6/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[-(z + 1)^6/(z - 1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)

Formula

G.f.: (1+x)^6 /(1-x)^7.
a(n) = (4/45)*n^6 + (4/15)*n^5 + (14/9)*n^4 + (8/3)*n^3 + (196/45)*n^2 + (46/15)*n + 1. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
a(n) = Sum_{k=0..min(6,n)} 2^k * binomial(6,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - 37/60 = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6). - Peter Bala, Mar 23 2024

A047662 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k)=a(n-1,k-1)+a(n-1,k)+a(n,k-1)+1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 31, 20, 5, 6, 30, 64, 64, 30, 6, 7, 42, 115, 160, 115, 42, 7, 8, 56, 188, 340, 340, 188, 56, 8, 9, 72, 287, 644, 841, 644, 287, 72, 9, 10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10, 11, 110, 579, 1824, 3591
Offset: 1

Views

Author

Keywords

Examples

			The array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, ...
3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, ...
4, 20, 64, 160, 340, 644, 1120, 1824, 2820, 4180, 5984, 8320, ...
5, 30, 115, 340, 841, 1826, 3591, 6536, 11181, 18182, 28347, 42652, ...
6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, ...
7, 56, 287, 1120, 3591, 9912, 24319, 54272, 112071, 216952, 397727, 696032, ...
8, 72, 416, 1824, 6536, 20040, 54272, 132864, 299208, 628232, 1242912, 2336672, ...
...
The first few antidiagonals are:
1,
2, 2,
3, 6, 3,
4, 12, 12, 4,
5, 20, 31, 20, 5,
6, 30, 64, 64, 30, 6,
7, 42, 115, 160, 115, 42, 7,
8, 56, 188, 340, 340, 188, 56, 8,
9, 72, 287, 644, 841, 644, 287, 72, 9,
10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10,
...
		

Crossrefs

Rows give A037237, 4*A006007, A047661, A047663, A047664, main diagonal is A047665 (see also A001850).
See also A008288, A048776.

Programs

  • Maple
    A047662 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047662(n-1,k-1)+A047662(n,k-1)+A047662(n-1,k)+1; fi; end;
  • Mathematica
    a[n_, 1] := n; a[1, k_] := k; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n-1, k] + a[n, k-1] + 1; Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2013 *)

Formula

a(n, k) =(A008288(n, k)-1)/2. Sum of antidiagonals is A048776.

A064861 Triangle of Sulanke numbers: T(n,k) = T(n,k-1) + a(n-1,k) for n+k even and a(n,k) = a(n,k-1) + 2*a(n-1,k) for n+k odd.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17
Offset: 0

Views

Author

Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001

Keywords

Comments

When A064861 is regarded as a triangle read by rows, this is [1,0,-1,0,0,0,0,0,0,...] DELTA [2,-1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 14 2008

Examples

			Table begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  2,  3,  5,   6,   8,  9, 11, ...
  2,  8, 13,  25,  33, 51, ...
  4, 12, 38,  63, 129, ...
  4, 28, 66, 192, ...
		

Crossrefs

Cf. central Delannoy numbers a(n,n) = A001850(n), Delannoy numbers (same main diagonal): a(n,n) = A008288(n,n), a(n-1,n)=A002003(n), a(n,n+1)=A002002(n), a(n,1)=A058582(n), apparently a(n,n+2)=A050151(n).

Programs

  • Haskell
    a064861 n k = a064861_tabl !! n !! k
    a064861_row n = a064861_tabl !! n
    a064861_tabl = map fst $ iterate f ([1], 2) where
    f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)
    -- Reinhard Zumkeller, May 01 2014
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n,k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1,k); fi; end;
    seq(seq(A064861(i,j-i),i=1..j-1),j=1..19);
  • Mathematica
    max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
  • PARI
    a(n,m)=if(n<0 || m<0,0,polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)),n+m),m))
    

Formula

G.f.: Sum_{m>=0} Sum_{n>=0} a_{m, n}*t^m*s^n = A(t,s) = (1+2*t+s)/(1-2*t^2-s^2-3*s*t).

A101164 Triangle read by rows: Delannoy numbers minus binomial coefficients.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 15, 4, 0, 0, 5, 26, 43, 26, 5, 0, 0, 6, 40, 94, 94, 40, 6, 0, 0, 7, 57, 175, 251, 175, 57, 7, 0, 0, 8, 77, 293, 555, 555, 293, 77, 8, 0, 0, 9, 100, 455, 1079, 1431, 1079, 455, 100, 9, 0, 0, 10, 126, 668, 1911, 3191, 3191, 1911, 668, 126, 10, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 03 2004

Keywords

Examples

			Triangle begins as:
  0
  0, 0;
  0, 1,  0;
  0, 2,  2,   0;
  0, 3,  7,   3,   0;
  0, 4, 15,  15,   4,   0;
  0, 5, 26,  43,  26,   5,  0;
  0, 6, 40,  94,  94,  40,  6, 0;
  0, 7, 57, 175, 251, 175, 57, 7, 0;
		

Crossrefs

Programs

  • Haskell
    a101164 n k = a101164_tabl !! n !! k
    a101164_row n = a101164_tabl !! n
    a101164_tabl = zipWith (zipWith (-)) a008288_tabl a007318_tabl
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    A101164:= func< n,k | (&+[Binomial(n-k,j)*Binomial(k,j)*2^j: j in [0..n-k]]) - Binomial(n,k) >;
    [A101164(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 17 2021
    
  • Mathematica
    T[n_, k_]:= Hypergeometric2F1[-k, k-n, 1, 2] - Binomial[n, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2021 *)
  • Sage
    def T(n,k): return simplify(hypergeometric([-n+k, -k], [1], 2)) - binomial(n,k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 17 2021

Formula

T(n, k) = A008288(n, k) - binomial(n, k), 0<=k<=n, where binomial=A007318.
T(n,2) = A005449(n-2) for n>1;
T(n,3) = A101165(n-3) for n>2;
T(n,4) = A101166(n-4) for n>3;
Sum_{k=0..n} T(n, k) = A094706(n).
From G. C. Greubel, Sep 17 2021: (Start)
T(n, k) = Sum_{j=0..n-k} binomial(n-k, j)*binomial(k, j)*2^j - binomial(n,k).
T(n, 1) = n-1, n > 0. (End)

A102413 Triangle read by rows: T(n,k) is the number of k-matchings in the n-sunlet graph (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 16, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 48, 76, 48, 12, 1, 1, 14, 70, 154, 154, 70, 14, 1, 1, 16, 96, 272, 384, 272, 96, 16, 1, 1, 18, 126, 438, 810, 810, 438, 126, 18, 1, 1, 20, 160, 660, 1520, 2004, 1520, 660, 160, 20, 1, 1, 22, 198, 946, 2618, 4334, 4334, 2618, 946, 198, 22, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 07 2005

Keywords

Comments

The n-sunlet graph is the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added.
Row n contains n+1 terms. Row sums yield A099425. T(n,k) = T(n,n-k).
For n > 2: same recurrence as A008288 and A128966. - Reinhard Zumkeller, Apr 15 2014

Examples

			T(3,2) = 6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc} and {Bb,Cc}.
The triangle starts:
  1;
  1, 1;
  1, 4,  1;
  1, 6,  6, 1;
  1, 8, 16, 8, 1;
From _Eric W. Weisstein_, Apr 03 2018: (Start)
Rows as polynomials:
  1
  1 +    x,
  1 +  4*x +    x^2,
  1 +  6*x +  6*x^2 +    x^3,
  1 +  8*x + 16*x^2 +  8*x^3 +    x^4,
  1 + 10*x + 30*x^2 + 30*x^3 + 10*x^4 + x^5,
  ... (End)
		

References

  • J. L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004, p. 894.
  • F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969, p. 167.

Crossrefs

Cf. A002203 or A099425 (row sums), A006318, A008288.
Cf. A241023 (central terms).

Programs

  • Haskell
    a102413 n k = a102413_tabl !! n !! k
    a102413_row n = a102413_tabl !! n
    a102413_tabl = [1] : [1,1] : f [2] [1,1] where
       f us vs = ws : f vs ws where
                 ws = zipWith3 (((+) .) . (+))
                      ([0] ++ us ++ [0]) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    G:=(1+t*z^2)/(1-(1+t)*z-t*z^2): Gser:=simplify(series(G,z=0,38)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[Table[2^-n ((1 + x - Sqrt[1 + x (6 + x)])^n + (1 + x + Sqrt[1 + x (6 + x)])^n), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    LinearRecurrence[{1 + x, x}, {1, 1 + x, 1 + 4 x + x^2}, 10] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    Join[{1}, CoefficientList[CoefficientList[Series[(-1 - x - 2 x z)/(-1 + z + x z + x z^2), {z, 0, 10}], z], x]] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

G.f.: G(t,z) = (1 + t*z^2) / (1 - (1+t)*z - t*z^2).
For n > 2: T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Apr 15 2014 (corrected by Andrew Woods, Dec 08 2014)
From Peter Bala, Jun 25 2015: (Start)
The n-th row polynomial R(n, t) = [z^n] F(z, t)^n, where F(z, t) = 1/2*( 1 + (1 + t)*z + sqrt(1 + 2*(1 + t)*z + (1 + 6*t + t^2)*z^2) ).
exp( Sum_{n >= 1} R(n, t)*z^n/n ) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ... is the o.g.f for A008288 read as a triangular array. (End)
From Peter Bala, Aug 01 2024: (Start)
T(n, k) = A008288(n-k, k) + A008288(n-k-1, k-1) (Bihan et al., Proposition 6.6).
T(n, k) = 1 if n = 0 or k = n, else for 1 <= k <= n-1, T(n, k) = Sum_{j = 0..min(n-k, k)} (2^j)*(binomial(n-k, j)*binomial(k, j) + binomial(n-k-1, j)*binomial(k-1, j)).
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. The signed n-th row polynomial R(n, -x) = 1/S(x)^n + (x*S(x))^n. (End)

Extensions

Row 0 in polynomials and Mathematica programs added by Georg Fischer, Apr 01 2019

A204061 G.f.: exp( Sum_{n>=1} A001333(n)^2 * x^n/n ) where A001333(n) = A002203(n)/2, one-half the companion Pell numbers.

Original entry on oeis.org

1, 1, 5, 21, 101, 501, 2561, 13345, 70561, 377281, 2035285, 11059205, 60454005, 332138405, 1832677185, 10150115201, 56398558081, 314273655745, 1755700634981, 9830544087221, 55155558312901, 310027473436821, 1745567243959105, 9843160519978401, 55582528404717601
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2012

Keywords

Comments

a(n) == 1 (mod 5) iff n has no 2's in its base 5 expansion (A023729), otherwise a(n) == 0 (mod 5); this is a conjecture needing proof.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 101*x^4 + 501*x^5 + 2561*x^6 +...
where log(A(x)) = x + 3^2*x^2/2 + 7^2*x^3/3 + 17^2*x^4/4 + 41^2*x^5/5 + 99^2*x^6/6 + 239^2*x^7/7 +...+ A001333(n)^2*x^n/n +...
The last digit of the terms in this sequence seems to be either a '1' or a '5':
by conjecture, a(n) == 0 (mod 5) whenever n has a 2 in its base 5 expansion;
if true, terms a(2*5^k) through a(3*5^k - 1) all end with digit '5' for k>=0.
		

Crossrefs

Programs

  • PARI
    {A001333(n)=polcoeff((1-x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A001333(k)^2*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1/(sqrt(1+x+x*O(x^n))*(1-6*x+x^2+x*O(x^n))^(1/4)),n)}

Formula

G.f.: 1 / ( sqrt(1+x) * (1-6*x+x^2)^(1/4) ).
Self-convolution yields A026933: Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers.
a(n) ~ 2^(1/8) * GAMMA(3/4) * (3+2*sqrt(2))^(n+1/2) / (4 * Pi * n^(3/4)). - Vaclav Kotesovec, Oct 30 2014

A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 9, 1, 1, 25, 41, 13, 1, 1, 41, 129, 85, 17, 1, 1, 61, 321, 377, 145, 21, 1, 1, 85, 681, 1289, 833, 221, 25, 1, 1, 113, 1289, 3653, 3649, 1561, 313, 29, 1, 1, 145, 2241, 8989, 13073, 8361, 2625, 421, 33, 1, 1, 181, 3649, 19825, 40081, 36365, 16641, 4089, 545, 37, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2006, Oct 22 2006

Keywords

Comments

Row sums are A099463(n+1). Diagonal sums are A116404.
Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1, 13,   9,   1;
  1, 25,  41,  13,   1;
  1, 41, 129,  85,  17,  1;
  1, 61, 321, 377, 145, 21, 1;
		

Crossrefs

Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883.

Programs

  • Magma
    T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021
    
  • Maple
    T := (n,k) -> hypergeom([-2*k, k-n], [1], 2);
    seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 16 2014
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) )
    flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021

Formula

T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).
T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).
T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014
T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021

A190666 Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}.

Original entry on oeis.org

1, 9, 61, 377, 2241, 13073, 75517, 433905, 2485825, 14218905, 81270333, 464387817, 2653649025, 15167050785, 86716873725, 495998874593, 2838240338817, 16248650965289, 93065296937533, 533285164334169, 3057236753252161, 17534423944871729, 100609937775369981
Offset: 0

Views

Author

Shanzhen Gao, May 25 2011

Keywords

Comments

+-3-diagonal of A008288 as a square array. - Shel Kaphan, Jan 07 2023

References

  • S. Gao, H. Niederhausen, Counting New Lattice Paths and Walks with Several Step Vectors (submitted to Congr. Numer.). - Shanzhen Gao, May 25 2011

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember;
          if i<0 or j<0 then 0
        elif i=0 and j=0 then 1
        else b(i-1, j) +b(i, j-1) +b(i-1, j-1)
          fi
        end:
    a:= n-> b(n+3, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2011
  • Mathematica
    b[i_, j_] /; i<0 || j<0 = 0; b[0, 0] = 1; b[i_, j_]:= b[i, j]= b[i-1, j] + b[i, j-1] + b[i-1, j-1]; a[n_] := b[n+3, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 01 2011, after Maple prog. *)
    CoefficientList[Series[(-1+3*x-x^2+(1-6*x+6*x^2-x^3)/Sqrt[x^2-6*x+1])/(2*x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[(-1)^n Hypergeometric2F1[-n, n+4, 1, 2], {n,0,22}] (* Peter Luschny, Mar 02 2017 *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * C(n+k+3,k+3) = A113139 (n+3,3). - Alois P. Heinz, Jun 01 2011
G.f.: (-1 + 3*x - x^2 + (1 - 6*x + 6*x^2 - x^3)/sqrt(x^2 - 6*x + 1))/(2*x^3). - Alois P. Heinz, Jun 03 2011
Recurrence: n*(n+3)*a(n) = (5*n^2 + 15*n + 16)*a(n-1) + (5*n^2 - 5*n + 6)*a(n-2) - (n-2)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(1632 + 1154*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
From Peter Bala, Mar 02 2017: (Start)
a(n) = (1/2^(n+1))*Sum_{k >= 3} (1/2^k)*binomial(n+k, k)*binomial(n+k, n+3).
a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*binomial(n,k) * binomial(n+k+3,k).
n*(n+3)*(2*n + 1)*a(n) = 6*(n+1)*(2*n^2 + 4*n + 3)*a(n-1) - (n-1)*(n+2)*(2*n + 3)*a(n-2) with a(0) = 1 and a(1) = 9. (End)
a(n) = (-1)^n*hypergeom([-n, n+4], [1], 2). - Peter Luschny, Mar 02 2017

A328300 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 26, 15, 1, 1, 31, 82, 82, 31, 1, 1, 63, 237, 343, 237, 63, 1, 1, 127, 651, 1257, 1257, 651, 127, 1, 1, 255, 1730, 4256, 5594, 4256, 1730, 255, 1, 1, 511, 4494, 13669, 22411, 22411, 13669, 4494, 511, 1, 1, 1023, 11485, 42279, 83680, 103730, 83680, 42279, 11485, 1023, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2019

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,    1;
  1,  15,   26,   15,    1;
  1,  31,   82,   82,   31,    1;
  1,  63,  237,  343,  237,   63,    1;
  1, 127,  651, 1257, 1257,  651,  127,   1;
  1, 255, 1730, 4256, 5594, 4256, 1730, 255, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A000225.
Row sums give A328296.
T(2n,n) gives A328269.
T(n,floor(n/2)) gives A328280.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
          add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    T:= (n, k)-> b(sort([0, k, n-k])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[l_List] := b[l] = If[l[[-1]] == 0, 1, Function[r, Sum[Sum[Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {k, r}], {j, r}], {i, r}]][{-1, 0, 1}]];
    T[n_, k_] := b[Sort[{0, k, n - k}]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 10 2020, after Maple *)

Formula

T(n,k) = T(n,n-k).
Previous Showing 61-70 of 141 results. Next