A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.
7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0
Examples
0.741531185599394439863864773280788407074147647141390260119955...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.4, n=7.
- A.H.M. Smeets, Python program for Legendre-Gauss quadrature constants.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature.
- Wikipedia, Legendre polynomials.
- Index entries for algebraic numbers, degree 6.
Crossrefs
There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
Programs
-
Mathematica
First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
-
PARI
solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025
Formula
Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.
Comments