cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A022144 Coordination sequence for root lattice B_2.

Original entry on oeis.org

1, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360
Offset: 0

Views

Author

Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)

Keywords

Comments

Equivalently, the coordination sequence for a point of degree 8 in the tiling of the Euclidean plane by right triangles (with angles Pi/2, Pi/4, Pi/4). These triangles are fundamental regions for the Coxeter group (2,4,4). In the notation of Conway et al. 2008 this is the tiling *442. The coordination sequence for a point of degree 4 is given by A234275. - N. J. A. Sloane, Dec 28 2015
Number of points of L_infinity norm n in the simple square lattice Z^2. - N. J. A. Sloane, Apr 15 2008
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 24 ).
Number of 4 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
These numbers correspond to the number of primes in the shells of a prime spiral. In a(2) there are 8 primes surrounding 2 in a prime spiral. - Enoch Haga, Apr 06 2000

Examples

			1 + 8*x + 16*x^2 + 24*x^3 + 32*x^4 + 40*x^5 + 48*x^6 + 56*x^7 + ...
		

References

  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 191.

Crossrefs

Apart from initial term, the same as A008590.
Cf. A234275.
For partial sums see A016754.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

Formula

a(n) = [x^(2*n)] ((1 + x)/(1 - x))^2.
G.f. for coordination sequence of B_n lattice: Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i - 2*n*z*(1+z)^(n-1)/(1-z)^n. [Bacher et al.]
a(n) = (2*n+1)^2 - (2*n-1)^2. Binomial transform of [1, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Dec 27 2007
a(n) = 0^n + 8*n. - Vincenzo Librandi, Aug 21 2011
G.f.: 1 + 8*x/(1-x)^2. - R. J. Mathar, Feb 16 2018
Sum_{i=0..n} a(i) = (2*n+1)^2 = A016754(n). - Chunqing Liu, Jan 12 2020
E.g.f.: 1 + 8*x*exp(x). - Stefano Spezia, Apr 05 2021

A265036 Coordination sequence of 2-uniform tiling {3.4.6.4, 4.6.12} with respect to a point of type 3.4.6.4.

Original entry on oeis.org

1, 4, 6, 7, 10, 14, 20, 24, 24, 23, 26, 34, 42, 44, 40, 37, 42, 54, 64, 64, 56, 51, 58, 74, 86, 84, 72, 65, 74, 94, 108, 104, 88, 79, 90, 114, 130, 124, 104, 93, 106, 134, 152, 144, 120, 107, 122, 154, 174, 164, 136, 121, 138, 174, 196, 184, 152, 135, 154, 194, 218
Offset: 0

Views

Author

N. J. A. Sloane, Dec 12 2015

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See page 67, 4th row, 3rd tiling.
  • Otto Krötenheerdt, Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene, I, II, III, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Natur. Reihe, 18 (1969), 273-290; 19 (1970), 19-38 and 97-122. [Includes classification of 2-uniform tilings]
  • Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166.

Crossrefs

See A265035 for the other type of point.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{4,-8,10,-8,4,-1},{1,4,6,7,10,14,20,24,24,23},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

Based on the b-file, the g.f. appears to be (-2*x^9+6*x^8-8*x^7+7*x^6-2*x^5-2*x^4+5*x^3-2*x^2+1) / (x^6-4*x^5+8*x^4-10*x^3+8*x^2-4*x+1). - N. J. A. Sloane, Dec 14 2015

Extensions

Extended by Joseph Myers, Dec 13 2015
b-file extended by Joseph Myers, Dec 18 2015

A265035 Coordination sequence of 2-uniform tiling {3.4.6.4, 4.6.12} with respect to a point of type 4.6.12.

Original entry on oeis.org

1, 3, 6, 9, 11, 14, 17, 21, 25, 28, 30, 32, 35, 39, 43, 46, 48, 50, 53, 57, 61, 64, 66, 68, 71, 75, 79, 82, 84, 86, 89, 93, 97, 100, 102, 104, 107, 111, 115, 118, 120, 122, 125, 129, 133, 136, 138, 140, 143, 147, 151, 154, 156, 158, 161, 165, 169, 172, 174, 176
Offset: 0

Views

Author

N. J. A. Sloane, Dec 12 2015

Keywords

Comments

Joseph Myers (Dec 14 2015) reports that "My program for coordination sequences requires describing the tiling structure under translation, listing all edges in the form: (class1, 0, 0) has an edge to (class2, x, y). The present tiling has 18 orbits of vertices under translation and 30 orbits of edges under translation (each of which is described in both directions). So in principle it could generate the other 19 2-uniform tilings, but without a cross check with hand-computed terms there's a risk of e.g. missing some edges, and a fair amount of work producing all the descriptions of translation classes of edges."
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See page 67, 4th row, 3rd tiling.
  • Otto Krötenheerdt, Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene, I, II, III, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Natur. Reihe, 18 (1969), 273-290; 19 (1970), 19-38 and 97-122. [Includes classification of 2-uniform tilings]
  • Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166.

Crossrefs

See A265036 for the other type of point.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{3,-4,3,-1},{1,3,6,9,11,14,17,21,25},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

Based on the b-file, the g.f. appears to be (1+x^2+2*x^5-2*x^6+2*x^7-x^8)/(1-3*x+4*x^2-3*x^3+x^4). This matches the first 1000 terms, so is probably correct. - N. J. A. Sloane, Dec 14 2015
Conjectured g.f. is equivalent to a(n) = 3*n - A010892(n+1) for n >= 5. - R. J. Mathar, Oct 09 2020

Extensions

Extended by Joseph Myers, Dec 13 2015
b-file extended by Joseph Myers, Dec 18 2015

A008579 Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.

Original entry on oeis.org

1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
Offset: 0

Views

Author

Keywords

Comments

Interesting because coefficients never become monotonic.
Also the coordination sequence for a planar net made of densely packed circles. - Yuriy Sibirmovsky, Sep 11 2016
Described by J.-G. Eon (2014) as the coordination sequence of the Kagome net. - N. J. A. Sloane, Jan 03 2018

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors).

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Programs

  • Haskell
    a008579 0 = 1
    a008579 1 = 4
    a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n',m) = divMod n 2
    a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1,4*x+3]) [1..]
    -- Reinhard Zumkeller, Nov 12 2012
  • Maple
    f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi;
  • Mathematica
    a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 18 2011, after Maple *)
    CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,4,8,14,18,22},50] (* Harvey P. Dale, Sep 05 2018 *)

Formula

G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4)/(1 - x^2)^2.
From R. J. Mathar, Nov 26 2014: (Start)
a(2n) = A017365(n), n > 0.
a(2n+1) = A017137(n), n > 0. (End)
From Stefano Spezia, Aug 07 2022: (Start)
a(n) = (9 + (-1)^n)*n/2 - 2*(-1)^n for n > 1.
E.g.f.: 3 - 2*x + (4*x - 2)*cosh(x) + (5*x + 2)*sinh(x). (End)

A103881 Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 42, 18, 2, 1, 30, 110, 92, 24, 2, 1, 42, 240, 340, 162, 30, 2, 1, 56, 462, 1010, 780, 252, 36, 2, 1, 72, 812, 2562, 2970, 1500, 362, 42, 2, 1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48, 2, 1, 110, 2070, 11832, 26474, 27174, 14240, 4060, 642, 54, 2, 1, 132, 3080, 22530, 66222, 91112, 65226, 26070, 6040, 812, 60, 2
Offset: 1

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

T(n,k) is the number of integer sequences of length n+1 with sum zero and sum of absolute values 2k. - R. H. Hardin, Feb 23 2009

Examples

			Array begins:
  1,   2,     2,      2,       2,        2,         2,          2, ... A040000;
  1,   6,    12,     18,      24,       30,        36,         42, ... A008458;
  1,  12,    42,     92,     162,      252,       362,        492, ... A005901;
  1,  20,   110,    340,     780,     1500,      2570,       4060, ... A008383;
  1,  30,   240,   1010,    2970,     7002,     14240,      26070, ... A008385;
  1,  42,   462,   2562,    9492,    27174,     65226,     137886, ... A008387;
  1,  56,   812,   5768,   26474,    91112,    256508,     623576, ... A008389;
  1,  72,  1332,  11832,   66222,   271224,    889716,    2476296, ... A008391;
  1,  90,  2070,  22530,  151560,   731502,   2777370,    8809110, ... A008393;
  1, 110,  3080,  40370,  322190,  1815506,   7925720,   28512110, ... A008395;
  1, 132,  4422,  68772,  643632,  4197468,  20934474,   85014204, ... A035837;
  1, 156,  6162, 112268, 1219374,  9129276,  51697802,  235895244, ... A035838;
  1, 182,  8372, 176722, 2206932, 18827718, 120353324,  614266354, ... A035839;
  1, 210, 11130, 269570, 3838590, 37060506, 265953170, 1511679210, ... A035840;
  ...
Antidiagonals:
  1;
  1,  2;
  1,  6,    2;
  1, 12,   12,    2;
  1, 20,   42,   18,    2;
  1, 30,  110,   92,   24,    2;
  1, 42,  240,  340,  162,   30,    2;
  1, 56,  462, 1010,  780,  252,   36,   2;
  1, 72,  812, 2562, 2970, 1500,  362,  42,  2;
  1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48,  2;
		

Crossrefs

Programs

  • GAP
    T:=Flat(List([1..12],n->Concatenation([1],List([1..n-1],k->Sum([1..n],i->Binomial(n-k+1,i)*Binomial(k-1,i-1)*Binomial(n-i,k)))))); # Muniru A Asiru, Oct 14 2018
    
  • Magma
    A103881:= func< n,k | k le 0 select 1 else (&+[Binomial(n-k+1, j)*Binomial(k-1, j-1)*Binomial(n-j, k): j in [1..n-k]]) >;
    [A103881(n,k): k in [0..n-1], n in [1..15]]; // G. C. Greubel, Oct 16 2018; May 24 2023
    
  • Maple
    T:=proc(n,k) option remember; local i;
    if k=0 then 1 else
    add( binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k),i=1..n); fi;
    end:
    g:=n->[seq(T(n-i,i),i=0..n-1)]:
    for n from 1 to 14 do lprint(op(g(n))); od:
  • Mathematica
    T[n_, k_]:= (n+1)*(n+k-1)!*HypergeometricPFQ[{1-k,1-n,-n}, {2,-n-k+1}, 1]/(k!*(n-1)!); T[, 0]=1; Flatten[Table[T[n-k, k], {n,12}, {k,0,n-1}]] (* _Jean-François Alcover, Dec 27 2012 *)
  • PARI
    A103881(n,k) = if(k==0, 1, sum(j=1, n-k, binomial(n-k+1, j)*binomial(k-1, j-1)*binomial(n-j, k)));
    for(n=1, 15, for(k=0, n-1, print1(A103881(n,k), ", "))) \\ G. C. Greubel, Oct 16 2018; May 24 2023
    
  • SageMath
    def A103881(n,k): return 1 if k==0 else (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1).simplify()
    flatten([[A103881(n,k) for k in range(n)] for n in range(1,16)]) # G. C. Greubel, May 24 2023

Formula

T(n,k) = Sum_{i=1..n} C(n+1, i)*C(k-1, i-1)*C(n-i+k, k), T(n,0)=1.
G.f. of n-th row: (Sum_{i=0..n} C(n, i)^2*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
T(n, k) = Sum_{j=0..n} binomial(n,j)^2 * binomial(n+k-j-1, n-1) (array).
T(n, k) = (n+1)*binomial(n+k-1,k)*hypergeometric([-n,1-n,1-k], [2,1-n-k], 1), with T(n, k) = 1 (array).
t(n, k) = (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1), with t(n, 0) = 1 (antidiagonals).
Sum_{k=0..n-1} t(n, k) = A047085(n). (End)
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Legendre_P(n, (1 + x)/(1 - x)).
(n+1)*T(n+1,k) = (n+1)*T(n+1,k-1) + (2*n+1)*(T(n,k) + T(n,k-1)) - n*(T(n-1,k) - T(n-1,k-1)). (End)

Extensions

Corrected by N. J. A. Sloane, Dec 15 2012, at the suggestion of Manuel Blum

A250122 Coordination sequence for planar net 3.12.12.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0

Views

Author

Darrah Chavey, Nov 23 2014

Keywords

Comments

Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Cf. A298805.

Programs

  • Mathematica
    Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)

Formula

From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023

Extensions

a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014

A072154 Coordination sequence for the planar net 4.6.12.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 15, 17, 19, 21, 24, 27, 29, 31, 33, 36, 39, 41, 43, 45, 48, 51, 53, 55, 57, 60, 63, 65, 67, 69, 72, 75, 77, 79, 81, 84, 87, 89, 91, 93, 96, 99, 101, 103, 105, 108, 111, 113, 115, 117, 120, 123, 125, 127, 129, 132, 135, 137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There is only one type of node in this structure: each node meets a square, a hexagon and a 12-gon.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.
Also, coordination sequence for the aluminophosphate AlPO_4-5 structure.

References

  • A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1, line "p6m" (but beware typos).

Crossrefs

For partial sums see A265078.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
See also A301730.

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 5, 7, 9, 12, 15}, 100]] (* Jean-François Alcover, Dec 13 2018 *)

Formula

Empirical g.f.: (x+1)^2*(x^2-x+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - Colin Barker, Nov 18 2012
This empirical g.f. can also be written as (1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/(1 - x - x^5 + x^6). - N. J. A. Sloane, Dec 20 2015
Theorem: For n >= 7, a(n) = a(n-1) + a(n-5) - a(n-6), and a(5k) = 12k (k > 0), a(5k+m) = 12k + 2m + 1 (k >= 0, 1 <= m < 5). This also implies the conjectured g.f.'s. - N. J. A. Sloane, conjectured Dec 20 2015, proved Jan 20 2018.
Notes on the proof, from N. J. A. Sloane, Jan 20 2018 (Start)
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
The figure is divided into 6 sectors by the blue trunks. In the interior of each sector, working outwards from the base point P at the origin, there are successively 1,2,3,4,... (red) 12-gons. All the 12-gons (both red and blue) have a unique closest point to P.
If the closest point in a 12-gon is at distance d from P, then the contributions of the 12 points of the 12-gon to a(d), a(d+1), ..., a(d+6) are 1,2,2,2,2,2,1, respectively.
The rest of the proof is now a matter of simple counting.
The blue 12-gons (along the trunks) are especially easy to count, because there is a unique blue 12-gon at shortest distance d from P for d = 1,2,3,4,...
(End)
a(n) = 2*(6*n + sqrt(1 + 2/sqrt(5))*sin(2*n*Pi/5) + sqrt(1 - 2/sqrt(5))*sin(4*n*Pi/5))/5 for n > 0. - Stefano Spezia, Jan 05 2023

Extensions

More terms from Sean A. Irvine, Sep 29 2011
Thanks to Darrah Chavey for pointing out that this is the planar net 4.6.12. - N. J. A. Sloane, Nov 24 2014

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A019557 Coordination sequence for G_2 lattice.

Original entry on oeis.org

1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0

Views

Author

Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)

Keywords

Comments

Also, coordination sequence of Dual(3.12.12) tiling with respect to a 12-valent node. - N. J. A. Sloane, Jan 22 2018
For n > 1, also the number of minimum vertex colorings of the n-Andrásfai graph. - Eric W. Weisstein, Mar 03 2024

Examples

			From _Peter M. Chema_, Mar 20 2016: (Start)
Illustration of initial terms:
                                                       o
                                                      o o
                                    o                o   o
                                   o o        o o o o o o o o o o
                  o           o o o o o o o    o   o       o   o
               o o o o         o o     o o      o o         o o
     o          o   o           o       o        o           o
               o o o o         o o     o o      o o         o o
                  o           o o o o o o o    o   o       o   o
                                   o o        o o o o o o o o o o
                                    o                o   o
                                                      o o
                                                       o
     1           12                30                 48
Compare to A003154, A045946, and A270700. (End)
		

Crossrefs

For partial sums see A082040.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
  • PARI
    my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016

Formula

a(n) = 18*n - 6, n >= 1.
G.f.: (1 + 10*x + 7*x^2)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(3*x - 1) + 7.
a(n) = 6*A016789(n-1) for n >= 1.
a(n) = 2*a(n-1) - a(n-2) for n >= 3. (End)

A296368 Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.

Original entry on oeis.org

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0

Views

Author

N. J. A. Sloane, Dec 21 2017

Keywords

Comments

There are two types of point in this tiling. This is the coordination sequence with respect to a point of degree 3.
The coordination sequence with respect to a point of degree 4 (see second illustration) is simply 1, 4, 8, 12, 16, 20, ..., the same as the coordination sequence for the 4.4.4.4 square grid (A008574). See the CGS-NJAS link for the proof.

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
  • Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]

Crossrefs

For partial sums see A296909.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

The simplest formula is: a(0)=1, a(1)=2, a(2)=8, and thereafter a(n) = 4n if n is odd, 4n - 1 if n == 0 (mod 4), and 4n+1 if n == 2 (mod 4). (See the CGS-NJAS link for proof. - N. J. A. Sloane, May 10 2018)
a(n + 4) = a(n) + 16 for any n >= 3. - Rémy Sigrist, Dec 23 2017 (See the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 30 2017)
G.f.: -(x^6-x^5-2*x^4-4*x^2-x-1)/((x^2+1)*(x-1)^2).
From Colin Barker, Dec 23 2017: (Start)
a(n) = (8*n - (-i)^n - i^n) / 2 for n>2, where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>6.
(End)

Extensions

Terms a(8)-a(20) and RCSR link from Davide M. Proserpio, Dec 22 2017
More terms from Rémy Sigrist, Dec 23 2017
Previous Showing 11-20 of 58 results. Next