cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A000793 Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540, 2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 27720, 30030, 32760, 60060, 60060, 60060, 60060, 120120
Offset: 0

Views

Author

Keywords

Comments

Also the largest orbit size (cycle length) for the permutation A057511 acting on Catalan objects (e.g., planar rooted trees, parenthesizations). - Antti Karttunen, Sep 07 2000
Grantham mentions that he computed a(n) for n <= 500000.
An easy lower bound is a(n) >= A002110(max{ m | A007504(m) <= n}), with strict inequality if n is not in A007504 (sum of the first m primes). Indeed, if A007504(m) <= n, the partition of n into the first m primes and maybe one additional term will have an LCM greater than or equal to primorial(m). If n > A007504(m) then a(n) >= (3/2)*A002110(m) by replacing the initial 2 by 3. But even for n = A007504(m), one has a(n) > A002110(m) for m > 8, since replacing 2+23 in 2+3+5+7+11+13+17+19+23 by 16+9, one has an LCM of 8*3*primorial(8) > primorial(9) because 24 > 23. - M. F. Hasler, Mar 29 2015
Maximum degree of the splitting field of a polynomial of degree n over a finite field, since over a finite field the degree of the splitting field is the least common multiple of the degrees of the irreducible polynomial factors of the polynomial. - Charles R Greathouse IV, Apr 27 2015
Maximum order of the elements in the symmetric group S_n. - Jianing Song, Dec 12 2021

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 6*x^6 + 12*x^7 + 15*x^8 + ...
From _Joerg Arndt_, Feb 15 2013: (Start)
The 15 partitions of 7 are the following:
[ #]  [ partition ]   lcm( parts )
[ 1]  [ 1 1 1 1 1 1 1 ]   1
[ 2]  [ 1 1 1 1 1 2 ]   2
[ 3]  [ 1 1 1 1 3 ]   3
[ 4]  [ 1 1 1 2 2 ]   2
[ 5]  [ 1 1 1 4 ]   4
[ 6]  [ 1 1 2 3 ]   6
[ 7]  [ 1 1 5 ]   5
[ 8]  [ 1 2 2 2 ]   2
[ 9]  [ 1 2 4 ]   4
[10]  [ 1 3 3 ]   3
[11]  [ 1 6 ]   6
[12]  [ 2 2 3 ]   6
[13]  [ 2 5 ]  10
[14]  [ 3 4 ]  12  (max)
[15]  [ 7 ]   7
The maximum (LCM) value attained is 12, so a(7) = 12.
(End)
		

References

  • J. Haack, "The Mathematics of Steve Reich's Clapping Music," in Bridges: Mathematical Connections in Art, Music and Science: Conference Proceedings, 1998, Reza Sarhangi (ed.), 87-92.
  • Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 223.
  • J.-L. Nicolas, On Landau's function g(n), pp. 228-240 of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
  • S. M. Shah, An inequality for the arithmetical function g(x), J. Indian Math. Soc., 3 (1939), 316-318. [See below for a scan of the first page.]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000793 = maximum . map (foldl lcm 1) . partitions where
       partitions n = ps 1 n where
          ps x 0 = [[]]
          ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Mar 29 2015
    
  • Maple
    A000793 := proc(n)
        l := 1:
        p := combinat[partition](n):
        for i from 1 to combinat[numbpart](n) do
            if ilcm( p[i][j] $ j=1..nops(p[i])) > l then
                l := ilcm( p[i][j] $ j=1..nops(p[i]))
            end if:
        end do:
        l ;
    end proc:
    seq(A000793(n),n=0..30) ; # James Sellers, Dec 07 2000
    seq( max( op( map( x->ilcm(op(x)), combinat[partition](n)))), n=0..30); # David Radcliffe, Feb 28 2006
    # third Maple program:
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    a:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    f[n_] := Max@ Apply[LCM, IntegerPartitions@ n, 1]; Array[f, 47] (* Robert G. Wilson v, Oct 23 2011 *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; a[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 07 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = my(m, t, j, u); if( n<2, n>=0, m = ceil(n / exp(1)); t = ceil( (n/m)^m ); j=1; for( i=2, t, u = factor(i); u = sum( k=1, matsize(u)[1], u[k,1]^u[k,2]); if( u<=n, j=i)); j)}; /* Michael Somos, Oct 20 2004 */
    
  • PARI
    c=0;A793=apply(t->eval(concat(Vec(t)[#Str(c++) .. -1])),select(t->#t,readstr("/tmp/b000793.txt")));A000793(n)=A793[n+1] \\ Assumes the b-file in the /tmp (or C:\tmp) folder. - M. F. Hasler, Mar 29 2015
    
  • PARI
    A008475(n)=my(f=factor(n)); sum(i=1,#f~,f[i,1]^f[i,2]);
    a(n)=
    {
      if(n<2, return(1));
      forstep(i=ceil(exp(1.05315*sqrt(log(n)*n))), 2, -1,
        if(A008475(i)<=n, return(i))
      );
      1;
    } \\ Charles R Greathouse IV, Apr 28 2015
    
  • PARI
    { \\ translated from code given by Tomas Rokicki
      my( N = 100 );
      my( V = vector(N,j,1) );
       forprime (i=2, N,  \\ primes i
          forstep (j=N, i,  -1,
             my( hi = V[j] );
             my( pp = i );  \\ powers of prime i
             while ( pp<=j,  \\ V[] is 1-based
                 hi = max(if(j==pp, pp, V[j-pp]*pp), hi);
                 pp *= i;
             );
             V[j] = hi;
          );
       );
       print( V );  \\ all values
    \\   print( V[N] );  \\ just a(N)
    \\  print("0 1");  for (n=1, N, print(n, " ", V[n]) );  \\ b-file
    } \\ Joerg Arndt, Nov 14 2016
    
  • PARI
    {a(n) = my(m=1); if( n<0, 0, forpart(v=n, m = max(m, lcm(Vec(v)))); m)}; /* Michael Somos, Sep 04 2017 */
    
  • Python
    from sympy import primerange
    def aupton(N): # compute terms a(0)..a(N)
        V = [1 for j in range(N+1)]
        for i in primerange(2, N+1):
            for j in range(N, i-1, -1):
                hi = V[j]
                pp = i
                while pp <= j:
                    hi = max((pp if j==pp else V[j-pp]*pp), hi)
                    pp *= i
                V[j] = hi
        return V
    print(aupton(47)) # Michael S. Branicky, Oct 09 2022 after Joerg Arndt
    
  • Python
    from sympy import primerange,sqrt,log,Rational
    def f(N): # compute terms a(0)..a(N)
        V = [1 for j in range(N+1)]
        if N < 4:
            C = 2
        else:
            C = Rational(166,125)
        for i in primerange(C*sqrt(N*log(N))):
            for j in range(N, i-1, -1):
                hi = V[j]
                pp = i
                while pp <= j:
                    hi = max(V[j-pp]*pp, hi)
                    pp *= i
                V[j] = hi
        return V
    # Philip Turecek, Mar 31 2023
    
  • Sage
    def a(n):
      return max([lcm(l) for l in Partitions(n)])
    # Philip Turecek, Mar 28 2023
  • Scheme
    ;; A naive algorithm searching through all partitions of n:
    (define (A000793 n) (let ((maxlcm (list 0))) (fold_over_partitions_of n 1 lcm (lambda (p) (set-car! maxlcm (max (car maxlcm) p)))) (car maxlcm)))
    (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
    ;; From Antti Karttunen, May 17 2013.
    

Formula

Landau: lim_{n->oo} (log a(n)) / sqrt(n log n) = 1.
For bounds, see the Shah and Massias references.
For n >= 2, a(n) = max_{k} A008475(k) <= n. - Joerg Arndt, Nov 13 2016

Extensions

More terms from David W. Wilson
Removed erroneous comment about a(16) which probably originated from misreading a(15)=105 as a(16) because of offset=0: a(16) = 4*5*7 = 140 is correct as it stands. - M. F. Hasler, Feb 02 2009

A053585 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_k^e_k.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 7, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000

Keywords

Comments

Let p be the largest prime dividing n, a(n) is the largest power of p dividing n.

Examples

			a(42)=7 because 42=2*3*7, a(144)=9 because 144=16*9=2^4*3^2.
		

Crossrefs

Programs

  • Haskell
    a053585 = last . a141809_row  -- Reinhard Zumkeller, Jan 29 2013
    
  • Maple
    a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[-1])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 03 2023
  • Mathematica
    Table[Power @@ Last @ FactorInteger @ n, {n, 79}] (* Jean-François Alcover, Apr 01 2011 *)
  • PARI
    a(n)=if(n>1,my(f=factor(n)); f[#f~,1]^f[#f~,2],1) \\ Charles R Greathouse IV, Nov 10 2015
    
  • Python
    from sympy import factorint, primefactors
    def a(n):
        if n==1: return 1
        p = primefactors(n)[-1]
        return p**factorint(n)[p] # Indranil Ghosh, May 19 2017

Formula

a(n) = A006530(n)^A071178(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A141809(n,A001221(n)). - Reinhard Zumkeller, Jan 29 2013

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net), Apr 20 2000

A028233 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 2, 3, 4, 53, 2, 5, 8, 3, 2, 59, 4, 61, 2, 9, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 16, 81, 2, 83, 4, 5, 2
Offset: 1

Views

Author

Keywords

Comments

Highest power of smallest prime dividing n. - Reinhard Zumkeller, Apr 09 2015

Examples

			From _Muniru A Asiru_, Jan 27 2018: (Start)
If n=10, then a(10) = 2 since 10 = 2^1*5^1.
If n=16, then a(16) = 16 since 16 = 2^4.
If n=29, then a(29) = 29 since 29 = 29^1.
(End)
		

Crossrefs

Programs

  • GAP
    List(List(List(List([1..10^3], Factors), Collected), i -> i[1]), j -> j[1]^j[2]); # Muniru A Asiru, Jan 27 2018
  • Haskell
    a028233 = head . a141809_row
    -- Reinhard Zumkeller, Jun 04 2012, Aug 17 2011
    
  • Maple
    A028233 := proc(n)
        local spf,pf;
        if n = 1 then
            return 1 ;
        end if;
        spf := A020639(n) ;
        for pf in ifactors(n)[2] do
            if pf[1] = spf then
                return pf[1]^pf[2] ;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 09 2016
    # second Maple program:
    a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[1])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018
  • Mathematica
    a[n_] := Power @@ First[ FactorInteger[n]]; Table[a[n], {n, 1, 86}] (* Jean-François Alcover, Dec 01 2011 *)
  • PARI
    a(n)=if(n>1,n=factor(n);n[1,1]^n[1,2],1) \\ Charles R Greathouse IV, Apr 26 2012
    
  • Python
    from sympy import factorint
    def a(n):
        f = factorint(n)
        return 1 if n==1 else min(f)**f[min(f)] # Indranil Ghosh, May 12 2017
    
  • Scheme
    ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (define (A028233 n) (if (< n 2) n (let ((lpf (A020639 n))) (let loop ((m lpf) (n (/ n lpf))) (cond ((not (zero? (modulo n lpf))) m) (else (loop (* m lpf) (/ n lpf)))))))) ;; Antti Karttunen, May 29 2017
    

Formula

a(n) = A020639(n)^A067029(n). - Reinhard Zumkeller, May 13 2006
a(n) = A141809(n,1). - Reinhard Zumkeller, Jun 04 2012
a(n) = n / A028234(n). - Antti Karttunen, May 29 2017

Extensions

Name edited to include a(1) = 1 by Franklin T. Adams-Watters, Jan 27 2018

A034684 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = min { p_i^e_i }.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 3, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 5, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 5, 81, 2, 83, 3, 5, 2, 3, 8, 89, 2, 7, 4
Offset: 1

Views

Author

Keywords

Comments

a(1) = 1; for n > 1, smallest unitary divisor of n that is larger than 1.

Crossrefs

Programs

Formula

a(n) = min{A141809(n,k): k=1..A001221(n)}. - Reinhard Zumkeller, Jan 29 2013
a(n) = n/A052125(n). - Amiram Eldar, Sep 16 2024

A141809 Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 3, 7, 8, 9, 2, 5, 11, 4, 3, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 8, 3, 25, 2, 13, 27, 4, 7, 29, 2, 3, 5, 31, 32, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 8, 5, 41, 2, 3, 7, 43, 4, 11, 9, 5, 2, 23, 47, 16, 3, 49, 2, 25, 3, 17, 4, 13, 53, 2, 27, 5, 11, 8, 7, 3
Offset: 1

Views

Author

Leroy Quet, Jul 07 2008

Keywords

Comments

In other words, except for row 1, row n contains the unitary prime power divisors of n, sorted by the prime. - Franklin T. Adams-Watters, May 05 2011
A034684(n) = smallest term of n-th row; A028233(n) = T(n,1); A053585(n) = T(n,A001221(n)); A008475(n) = sum of n-th row for n > 1. - Reinhard Zumkeller, Jan 29 2013

Examples

			60 has the prime factorization 2^2 * 3^1 * 5^1, so row 60 is (4,3,5).
From _M. F. Hasler_, Oct 12 2018: (Start)
The table starts:
    n : largest prime powers dividing n
    1 :  1
    2 :  2
    3 :  3
    4 :  4
    5 :  5
    6 :  2, 3
    7 :  7
    8 :  8
    9 :  9
   10 :  2, 5
   11 : 11
   12 :  4, 3
   etc. (End)
		

Crossrefs

A027748, A124010 are used in a formula defining this sequence.
Cf. A001221 (row lengths), A008475 (row sums), A028233 (column 1), A034684 (row minima), A053585 (right edge).

Programs

  • Haskell
    a141809 n k = a141809_row n !! (k-1)
    a141809_row 1 = [1]
    a141809_row n = zipWith (^) (a027748_row n) (a124010_row n)
    a141809_tabf = map a141809_row [1..]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    f[{x_, y_}] := x^y; Table[Map[f, FactorInteger[n]], {n, 1, 50}] // Grid (* Geoffrey Critzer, Apr 03 2015 *)
  • PARI
    A141809_row(n)=if(n>1, [f[1]^f[2]|f<-factor(n)~], [1]) \\ M. F. Hasler, Oct 12 2018, updated Aug 19 2022

Formula

T(n,k) = A027748(n,k)^A124010(n,k) for n > 1, k = 1..A001221(n). - Reinhard Zumkeller, Mar 15 2012

A046790 Positive numbers divisible by 8 or by the square of an odd prime.

Original entry on oeis.org

8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, 49, 50, 54, 56, 63, 64, 72, 75, 80, 81, 88, 90, 96, 98, 99, 100, 104, 108, 112, 117, 120, 121, 125, 126, 128, 135, 136, 144, 147, 150, 152, 153, 160, 162, 168, 169, 171, 175, 176, 180, 184, 189, 192, 196, 198, 200, 207, 208
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

This sequence has many equivalent definitions:
(D1) Positive numbers divisible by 8 or by the square of an odd prime. (We take this as the main definition, since it is the simplest.)
(D2) Moduli m for which there exist affine maps f:x->a*x + b modulo m, with a > 1, such that f has order m in the affine group. (For example, 8 is a term because f:x->(5x+1) mod 8 is a map with order 8 in the group of affine maps mod 8: the smallest power of f equal to identity is f^8. The maps x->x+1 always have this property, so are excluded from consideration.) - Emmanuel Amiot, Jul 28 2007
(D3) Numbers k such that A005361(k) < A003557(k). - Anthony Browne, Jun 03 2016
(D4) Numbers i such that there is a smaller positive number j such that (i+j)/2 and sqrt(i*j) are integers. (See A046791 for the smallest choice for j.) - David W. Wilson, Dec 11 1999
(D5) Numbers k such that A008475(k) is different from A001414(k). - Benoit Cloitre, Jan 11 2003
For a proof of the equivalence of definitions (D1)-(D5) see the Don Reble link.
(D6) Numbers m >= 8 having a divisor k^2 >= 4 such that m and m/k^2 are of the same parity. (See A046791 for the largest such k.) - Vladimir Shevelev, Jun 06 2006
(D7) Numbers that can be the semiperimeter of a isosceles triangle with integer sides and area. - Peter Kagey, May 17 2019
Closed under multiplication, which may be used to construct the sequence. - David A. Corneth, Jun 07 2016
Complement of A078779. - Omar E. Pol, Jun 11 2016
m is in this sequence if and only if m does not divide 2*radical(m). - Peter Luschny, Mar 05 2019
Verified up to a(290) = 1000, {a(n)} is identical to the sequence of group orders for which there exists at least one group G such that |Char(G)| is a nontrivial divisor of |Normal(G)|, where |Char(G)| is the number of characteristic subgroups of G and |Normal(G)| the number of normal subgroups of G. - Miles Englezou, Jul 20 2024

Crossrefs

Programs

  • Mathematica
    ordreMax[a_, n_]:= Module[{mo, r, s, s0, gcd}, mo=MultiplicativeOrder[a,n]; s= s0=Mod[Sum[a^k,{k,0,mo-1}], n]; Max[Table[gcd=GCD[a-1,b];r=1; While[Mod[s *gcd, n]!=0, s=Mod[s0+a^mos,n];r++ ]; r*mo, {b,0,n-1} ]] ] ordreMax[n_] := Module[{candidats, m,t}, candidats = Select[Range[2,n-1], (GCD[n,# ]==1 && GCD[n, #-1]>1)&]; m=Max[t=Table[ordreMax[a,n], {a, candidats}] ]; {m,Part[candidats,Flatten@Position[t, m] ]}] Module[{resu}, Do[resu=ordreMax[n]; If[First[resu] >=n, Print[n ]], {n,4,200}]] (* This is for definition (D2). Emmanuel Amiot, Jul 28 2007 *)
    Select[Range[210], Mod[#, 8] == 0 || AnyTrue[ Divisors[#], DivisorSigma[0, #] == 3 && Mod[#, 4] != 0 &] &] (* Carlos Eduardo Olivieri, Jun 07 2016 *)
    Module[{upto=250,prs},prs=Prime[Range[2,PrimePi[Sqrt[upto]]]]^2;Join[ Range[ 8,upto,8],Select[Range[upto],AnyTrue[#/prs,IntegerQ]&]]] // Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 18 2018 *)
  • PARI
    is(n)={n%8==0||!issquarefree(n>>!bittest(n,0))} \\ M. F. Hasler, Jun 07 2016
    
  • Sage
    print([n for n in (1..208) if not ZZ(n).divides(2*radical(n))])  # Peter Luschny, Mar 05 2019

Formula

Let A(x) be the number of a(n) <= x. Then A(x) ~ (1 - 7/Pi^2)*x = 0.2907517...*x as x goes to infinity. - Vladimir Shevelev, Jun 07 2016

Extensions

Entry revised by N. J. A. Sloane, with help from Don Reble and several OEIS editors, Jun 07 2016

A029908 Starting with n, repeatedly sum prime factors (with multiplicity) until reaching 0 or a fixed point. Then a(n) is the fixed point (or 0).

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 5, 5, 7, 11, 7, 13, 5, 5, 5, 17, 5, 19, 5, 7, 13, 23, 5, 7, 5, 5, 11, 29, 7, 31, 7, 5, 19, 7, 7, 37, 7, 5, 11, 41, 7, 43, 5, 11, 7, 47, 11, 5, 7, 5, 17, 53, 11, 5, 13, 13, 31, 59, 7, 61, 5, 13, 7, 5, 5, 67, 7, 5, 5, 71, 7, 73, 5, 13, 23, 5, 5, 79, 13, 7, 43, 83, 5, 13
Offset: 1

Views

Author

Keywords

Comments

That is, the sopfr function (see A001414) applied repeatedly until reaching 0 or a fixed point.
For n > 1, the sequence reaches a fixed point which is either 4 or a prime.
A002217(n) is number of terms in sequence from n to a(n). - Reinhard Zumkeller, Apr 08 2003
Because sopfr(n) <= n (with equality at 4 and the primes), the first appearance of all primes is in the natural order: 2,3,5,7,11,... . - Zak Seidov, Mar 14 2011
The terms 0, 2, 3 and 4 occur exactly once, because no number > 5 can have factors that sum to be < 5, and therefore can never enter a trajectory that will drop below 5. - Christian N. K. Anderson, May 19 2013
For all primes p, where p is contained in A001359, then a(p^2) = p + 2. (A006512). Proof: p^2 has prime factors (p, p). This sums to 2p. 2p has factors (2, p). This sums to p + 2. Since p was the lesser of a twin prime, then p + 2 is the greater of a twin prime. - Ryan Bresler, Nov 04 2021

Examples

			20 -> 2+2+5 = 9 -> 3+3 = 6 -> 2+3 = 5, so a(20)=5.
		

Crossrefs

Cf. A001414 (sum of prime factors of n).

Programs

  • Maple
    f:= proc(n) option remember;
    if isprime(n) then n
    else `procname`(add(x[1]*x[2], x = ifactors(n)[2]))
    fi
    end proc:
    f(1):= 0: f(4):= 4:
    map(f, [$1..100]); # Robert Israel, Apr 27 2015
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] slog[x_] := slog[x_] := Apply[Plus, ba[x]*ep[x]] Table[FixedPoint[slog, w], {w, 1, 128}]
    f[n_] := Plus @@ Flatten[ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n]; Array[ FixedPoint[f, # ] &, 87] (* Robert G. Wilson v, Jan 18 2006 *)
    fz[n_]:=Plus@@(#[[1]]*#[[2]]&/@FactorInteger@n); Array[FixedPoint[fz,#]&,1000] (* Zak Seidov, Mar 14 2011 *)
  • Python
    from sympy import factorint
    def a(n, pn):
        if n == pn:
            return n
        else:
            return a(sum(p*e for p, e in factorint(n).items()), n)
    print([a(i, None) for i in range(1, 100)]) # Gleb Ivanov, Nov 05 2021

A051613 a(n) = partitions of n into powers of distinct primes (1 not considered a power).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 3, 2, 3, 2, 4, 3, 4, 4, 4, 8, 4, 8, 6, 9, 8, 10, 10, 13, 12, 13, 16, 16, 19, 17, 21, 23, 23, 25, 29, 31, 31, 31, 37, 40, 42, 44, 48, 49, 54, 55, 64, 67, 68, 70, 77, 84, 90, 92, 99, 102, 108, 115, 127, 133, 135, 138, 150, 165, 171, 183, 186, 198, 201, 220
Offset: 0

Views

Author

Keywords

Examples

			a(16) = 8 because we can write 16 = 2^4 = 3+13 = 5+11 = 3^2+7 = 2+3+11 = 2+3^2+5 = 2^3+3+5 = 2^2+5+7.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo3, integral)
    a051613' = p 1 2 where
       p x _ 0 = 1
       p x k m | m < qq       = 0
               | mod x q == 0 = p x (k + 1) m
               | otherwise    = p (q * x) (k + 1) (m - qq) + p x (k + 1) m
               where q = a025473 k; qq = a000961 k
    -- Reinhard Zumkeller, Nov 23 2015
    
  • Maple
    b:= proc(n,i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0, 1, `if`(i<1, 0, b(n,i-1)+
          add(b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    max = 70; f[x_] := Product[ 1 + Sum[x^(Prime[n]^k), {k, 1, If[n > 4, 1, 6]}], {n, 1, PrimePi[max]}]; CoefficientList[ Series[f[x], {x, 0, max}] , x](* Jean-François Alcover, Sep 12 2012 *)
  • PARI
    first(n)=my(x='x,pr=O(x^(n+1))+1); forprime(p=sqrtint(n)+1,n, pr*=1+x^p); forprime(p=2,sqrtint(n), pr*=1+sum(e=1,logint(n,2), x^p^e)); Vec(pr) \\ Charles R Greathouse IV, Jun 25 2017

Formula

a(n) = number of m such that A008475(m) = n.
G.f.: Product_{p prime} (1 + Sum_{k >= 1} x^(p^k)).

Extensions

Better description from David W. Wilson, Apr 19 2000

A023888 Sum of prime power divisors of n (1 included).

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 12, 10, 14, 10, 9, 31, 18, 15, 20, 12, 11, 14, 24, 18, 31, 16, 40, 14, 30, 11, 32, 63, 15, 20, 13, 19, 38, 22, 17, 20, 42, 13, 44, 18, 18, 26, 48, 34, 57, 33, 21, 20, 54, 42, 17, 22, 23, 32, 60, 15, 62, 34, 20, 127, 19, 17, 68, 24, 27
Offset: 1

Views

Author

Keywords

Comments

Sum of n-th row of triangle A210208. [Reinhard Zumkeller, Mar 18 2012]

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1+2+3+4 = 10. From
		

Crossrefs

Programs

  • Haskell
    a023888 = sum . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    f:= n -> 1 + add((t[1]^(t[2]+1)-t[1])/(t[1]-1),t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Jan 04 2017
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]<=1)& ])&, 70 ]
  • PARI
    for(n=1,100, s=1; fordiv(n,d, if((ispower(d,,&z)&&isprime(z)) || isprime(d),s+=d)); print1(s,", "))
    
  • PARI
    a(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      1 + sum(k = 1, fsz, f[k,1]*(f[k,1]^f[k,2] - 1)\(f[k,1]-1));
    };
    vector(100, n, a(n))  \\ Gheorghe Coserea, Jan 04 2017

Formula

a(n) = A000203(n) - A035321(n) = A023889(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = (p+q+...+z) + 1, a(p^k) = (p^(k+1)-1) / (p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
Previous Showing 21-30 of 58 results. Next